About

Log in?

DTU users get better search results including licensed content and discounts on order fees.

Anyone can log in and get personalized features such as favorites, tags and feeds.

Log in as DTU user Log in as non-DTU user No thanks

DTU Findit

Journal article

Molecular engineering of organic sensitizers for solar cell applications

From

Department of Chemistry, Korea University, Jochiwon, Chungnam 339-700, Korea.1

Novel organic sensitizers comprising donor, electron-conducting, and anchoring groups were engineered at molecular level and synthesized. The functionalized unsymmetrical organic sensitizers 3-{5-[N,N-bis(9,9-dimethylfluorene-2-yl)phenyl]-thiophene-2-yl}-2-cyano-acrylic acid (JK-1) and 3-{5'-[N,N-bis(9,9-dimethylfluorene-2-yl)phenyl]-2,2'-bisthiophene-5-yl}-2-cyano-acrylic acid (JK-2), upon anchoring onto TiO2 film, exhibit unprecedented incident photon to current conversion efficiency of 91%.

The photovoltaic data using an electrolyte having composition of 0.6 M M-methyl-N-butyl imidiazolium iodide, 0.04 M iodine, 0.025 M LiI, 0.05 M guanidinium thiocyanate, and 0.28 M tert-butylpyridine in a 15/85 (v/v) mixture of valeronitrile and acetonitrile revealed a short circuit photocurrent density of 14.0 +/- 0.2 mA/cm2, an open circuit voltage of 753 +/- 10 mV, and a fill factor of 0.76 +/- 0.02, corresponding to an overall conversion efficiency of 8.01% under standard AM 1.5 sunlight.

DFT/TDDFT calculations have been performed on the two organic sensitizers to gain insight into their structural, electronic, and optical properties. Our results show that the cyanoacrylic acid groups are essentially coplanar with respect to the thiophene units, reflecting the strong conjugation across the thiophene-cyanoacrylic groups.

Molecular orbitals analysis confirmed the experimental assignment of redox potentials, while TDDFT calculations allowed assignment of the visible absorption bands.

Language: English
Year: 2006
Pages: 16701-16707
ISSN: 15205126 and 00027863
Types: Journal article
DOI: 10.1021/ja066376f

DTU users get better search results including licensed content and discounts on order fees.

Log in as DTU user

Access

Analysis