About

Log in?

DTU users get better search results including licensed content and discounts on order fees.

Anyone can log in and get personalized features such as favorites, tags and feeds.

Log in as DTU user Log in as non-DTU user No thanks

DTU Findit

Journal article

Fabrication and characterization of RNA aptamer microarrays for the study of protein–aptamer interactions with SPR imaging

From

Department of Chemistry, University of California-Irvine Irvine, CA 92697, USA1

RNA microarrays were created on chemically modified gold surfaces using a novel surface ligation methodology and employed in a series of surface plasmon resonance imaging (SPRI) measurements of DNA–RNA hybridization and RNA aptamer–protein binding. Various unmodified single-stranded RNA (ssRNA) oligonucleotides were ligated onto identical 5′-phosphate-terminated ssDNA microarray elements with a T4 RNA ligase surface reaction.

A combination of ex situ polarization modulation FTIR measurements of the RNA monolayer and in situ SPRI measurements of DNA hybridization adsorption onto the surface were used to determine an ssRNA surface density of 4.0 × 1012 molecules/cm2 and a surface ligation efficiency of 85 ± 10%. The surface ligation methodology was then used to create a five-component RNA microarray of potential aptamers for the protein factor IXa (fIXa).

The relative surface coverages of the different aptamers were determined through a novel enzymatic method that employed SPRI measurements of a surface RNase H hydrolysis reaction. SPRI measurements were then used to correctly identify the best aptamer to fIXa, which was previously determined from SELEX measurements.

A Langmuir adsorption coefficient of 1.6 × 107 M−1 was determined for fIXa adsorption to this aptamer. Single-base variations from this sequence were shown to completely destroy the aptamer–fIXa binding interaction.

Language: Undetermined
Publisher: Oxford University Press
Year: 2006
Pages: 6416-6424
ISSN: 13624962 and 03051048
Types: Journal article
DOI: 10.1093/nar/gkl738

DTU users get better search results including licensed content and discounts on order fees.

Log in as DTU user

Access

Analysis