About

Log in?

DTU users get better search results including licensed content and discounts on order fees.

Anyone can log in and get personalized features such as favorites, tags and feeds.

Log in as DTU user Log in as non-DTU user No thanks

DTU Findit

Journal article

Modifications of interface chemistry of LSM–YSZ composite by ceria nanoparticles

From

Electrochemistry, Fuel Cells and Solid State Chemistry Division, Risø National Laboratory for Sustainable Energy, Technical University of Denmark1

Fuel Cells and Solid State Chemistry Division, Risø National Laboratory for Sustainable Energy, Technical University of Denmark2

Risø National Laboratory for Sustainable Energy, Technical University of Denmark3

Microstructures and Interfaces, Fuel Cells and Solid State Chemistry Division, Risø National Laboratory for Sustainable Energy, Technical University of Denmark4

A porous composite electrode LSM–YSZ (lanthanum strontium manganite and yttria stabilized zirconia) was impregnated with different amounts of SDC (samarium substituted ceria) nanoparticles. The materials were investigated with X-ray diffraction, scanning electron microscopy, transmission electron microscopy and X-ray photoelectron spectroscopy to determine the microstructure, the interface chemistry and the surface chemistry of the various impregnated samples.

The SDC nanoparticles cover the surface of the LSM–YSZ backbone to a large extent; they are approximately 5–20 nm in diameter and have a cubic crystal structure. Low concentrations of lanthanum and manganese originating from LSM were detected within SDC particles. It was also observed that the relative atomic concentration of strontium increased on the LSM–YSZ surface with increasing amount of SDC nanoparticles.

These findings are related to the applied nanoparticle impregnation method. It is indicated that interactions between surfactant, nanoparticles, impregnation solution and the LSM–YSZ composite take place which can locally affect the surface and interface chemistry of the investigated materials.

Language: English
Year: 2011
Pages: 36-42
ISSN: 18727689 and 01672738
Types: Journal article
DOI: 10.1016/j.ssi.2011.05.003
ORCIDs: Thydén, Karl Tor Sune and Mogensen, Mogens Bjerg

DTU users get better search results including licensed content and discounts on order fees.

Log in as DTU user

Access

Analysis