About

Log in?

DTU users get better search results including licensed content and discounts on order fees.

Anyone can log in and get personalized features such as favorites, tags and feeds.

Log in as DTU user Log in as non-DTU user No thanks

DTU Findit

Journal article ยท Preprint article

From tunneling to contact: Inelastic signals in an atomic gold junction from first principles

From

Theoretical Nanotechnology, Department of Micro- and Nanotechnology, Technical University of Denmark1

Department of Micro- and Nanotechnology, Technical University of Denmark2

The evolution of electron conductance in the presence of inelastic effects is studied as an atomic gold contact is formed evolving from a low-conductance regime (tunneling) to a high-conductance regime (contact). In order to characterize each regime, we perform density-functional theory (DFT) calculations to study the geometric and electronic structures, together with the strength of the atomic bonds and the associated vibrational frequencies.

The conductance is calculated by, first, evaluating the transmission of electrons through the system and, second, by calculating the conductance change due to the excitation of vibrations. As found in previous studies [Paulsson , Phys. Rev. B 72, 201101(R) (2005)], the change in conductance due to inelastic effects permits us to characterize the crossover from tunneling to contact.

The most notorious effect is the crossover from an increase in conductance in the tunneling regime to a decrease in conductance in the contact regime when the bias voltage matches a vibrational threshold. Our DFT-based calculations actually show that the effect of vibrational modes in electron conductance is rather complex, in particular, when modes localized in the contact region are permitted to extend into the electrodes.

As an example, we find that certain modes can give rise to decreases in conductance when in the tunneling regime, opposite to the above-mentioned result. Whereas details in the inelastic spectrum depend on the size of the vibrational region, we show that the overall change in conductance is quantitatively well approximated by the simplest calculation where only the apex atoms are allowed to vibrate.

Our study is completed by the application of a simplified model where the relevant parameters are obtained from the above DFT-based calculations.

Language: English
Year: 2007
Pages: 8
ISSN: 1550235x , 10980121 and 01631829
Types: Journal article and Preprint article
DOI: 10.1103/PhysRevB.75.235441
ORCIDs: Brandbyge, Mads
Other keywords

cond-mat.mes-hall

DTU users get better search results including licensed content and discounts on order fees.

Log in as DTU user

Access

Analysis