About

Log in?

DTU users get better search results including licensed content and discounts on order fees.

Anyone can log in and get personalized features such as favorites, tags and feeds.

Log in as DTU user Log in as non-DTU user No thanks

DTU Findit

Journal article

Concentration addition, independent action and generalized concentration addition models for mixture effect prediction of sex hormone synthesis in vitro

From

National Food Institute, Technical University of Denmark1

Division of Toxicology and Risk Assessment, National Food Institute, Technical University of Denmark2

Division of Food Chemistry, National Food Institute, Technical University of Denmark3

Humans are concomitantly exposed to numerous chemicals. An infinite number of combinations and doses thereof can be imagined. For toxicological risk assessment the mathematical prediction of mixture effects, using knowledge on single chemicals, is therefore desirable. We investigated pros and cons of the concentration addition (CA), independent action (IA) and generalized concentration addition (GCA) models.

First we measured effects of single chemicals and mixtures thereof on steroid synthesis in H295R cells. Then single chemical data were applied to the models; predictions of mixture effects were calculated and compared to the experimental mixture data. Mixture 1 contained environmental chemicals adjusted in ratio according to human exposure levels.

Mixture 2 was a potency adjusted mixture containing five pesticides. Prediction of testosterone effects coincided with the experimental Mixture 1 data. In contrast, antagonism was observed for effects of Mixture 2 on this hormone. The mixtures contained chemicals exerting only limited maximal effects.

This hampered prediction by the CA and IA models, whereas the GCA model could be used to predict a full dose response curve. Regarding effects on progesterone and estradiol, some chemicals were having stimulatory effects whereas others had inhibitory effects. The three models were not applicable in this situation and no predictions could be performed.

Finally, the expected contributions of single chemicals to the mixture effects were calculated. Prochloraz was the predominant but not sole driver of the mixtures, suggesting that one chemical alone was not responsible for the mixture effects. In conclusion, the GCA model seemed to be superior to the CA and IA models for the prediction of testosterone effects.

A situation with chemicals exerting opposing effects, for which the models could not be applied, was identified. In addition, the data indicate that in non-potency adjusted mixtures the effects cannot always be accounted for by single chemicals.

Language: English
Publisher: Public Library of Science
Year: 2013
Pages: e70490
ISSN: 19326203
Types: Journal article
DOI: 10.1371/journal.pone.0070490
ORCIDs: Hadrup, Niels , Taxvig, Camilla , Pedersen, Mikael , Nellemann, Christine Lydia , Hass, Ulla and Vinggaard, Anne Marie

DTU users get better search results including licensed content and discounts on order fees.

Log in as DTU user

Access

Analysis