About

Log in?

DTU users get better search results including licensed content and discounts on order fees.

Anyone can log in and get personalized features such as favorites, tags and feeds.

Log in as DTU user Log in as non-DTU user No thanks

DTU Findit

Journal article

Escherichia coli strains with promoter libraries constructed by Red/ET recombination pave the way for transcriptional fine tuning

From

Center for Systems Microbiology, Department of Systems Biology, Technical University of Denmark1

Department of Systems Biology, Technical University of Denmark2

System-oriented applications of genetic engineering, such as metabolic engineering, often require the serial optimization of enzymatic reaction steps, which can be achieved by transcriptional, fine-tuning. However, approaches to changing gene expression are usually limited to deletion and/or strong overexpression and rarely match the desired optimal transcript levels.

A solution to this all-or-nothing approach has been the use of a synthetic promoter library (SPL) that is based on randomized sequences flanking the consensus -10 and -35 promoter regions and allows for fine-tuning of bacterial gene expression. Red/ET recombination perfectly complements SPL technology, since it enables easy modification of the Escherichia Coli genome and can be accomplished with linear DNA (i.e., the SPL).

To demonstrate the synergistic use of Red/ET and SPL for metabolic engineering applications, we replaced the native promoter of a genomic localized phosphoglucose isomerase (pgi)-lacZ reporter construct by all SPL. Using these technologies together we were able to rapidly identify synthetic promoter sequences that resulted in activity range of 25% to 570% of the native pgi-promoter.

Language: English
Publisher: Future Science Ltd
Year: 2008
Pages: 335-337
ISSN: 19409818 and 07366205
Types: Journal article
DOI: 10.2144/000112907
ORCIDs: Jensen, Peter Ruhdal
Keywords

EXPRESSION

DTU users get better search results including licensed content and discounts on order fees.

Log in as DTU user

Access

Analysis