About

Log in?

DTU users get better search results including licensed content and discounts on order fees.

Anyone can log in and get personalized features such as favorites, tags and feeds.

Log in as DTU user Log in as non-DTU user No thanks

DTU Findit

Journal article

Approach to Interfacial and Intramolecular Electron Transfer of the Diheme Protein Cytochrome c(4) Assembled on Au(111) Surfaces

From

NanoChemistry, Department of Chemistry, Technical University of Denmark1

Department of Chemistry, Technical University of Denmark2

Metalloprotein Chemistry and Engineering, Department of Chemistry, Technical University of Denmark3

Intramolecular electron transfer (ET) between metal centers is a core feature of large protein complexes in photosynthesis, respiration, and redox enzyme catalysis. The number of microscopic redox potentials and ET rate constants is, however, prohibitive for experimental cooperative ET mapping, but two-center proteins are simple enough to offer complete communication networks.

At the same time, multicenter redox proteins operate in membrane environments where conformational dynamics may lead to gated ET features different from conditions in homogeneous solution. The bacterial respiratory diheme protein Pseudomonas stutzeri cytochrome c(4) has been a target for intramolecular, interheme ET.

We report here voltammetric and in situ scanning tunneling microscopy (STM) data for P. stutzeri cyt c(4) at single-crystal, atomically planar Au(111)-electrode surfaces modified by variable-length omega-mercapto-alkanoic carboxylic acids. As evidenced by in situ STM, the strongly dipolar protein is immobilized in a close to vertical orientation at this surface with the positively charged high-potential heme domain adjacent to the electrode.

This orientation gives asymmetric voltammograms with two one-ET peaks in the cathodic direction and a single two-ET peak in the anodic direction. Intramolecular, interheme ET with high, 8,000-30,000 s(-1), rate constants is notably an essential part of this mechanism. The high rate constants are in striking contrast to ET reactions of P. stutzeri cyt c4 with small reaction partners in homogeneous solution for which kinetic analysis clearly testifies to electrostatic cooperative effects but no intramolecular, interheme ET higher than 0.1-10 s(-1).

This difference suggests a strong gating feature of the process. On the basis of the three-dimensional structure of P. stutzeri cyt c(4), gating is understandable due to the through-space, hydrogen-bonded electronic contact between the heme propionates which is highly sensitive to environmental configurational fluctuations.

Language: English
Year: 2010
Pages: 5617-5624
ISSN: 15205207 and 15206106
Types: Journal article
DOI: 10.1021/jp1007208
ORCIDs: Chi, Qijin , Zhang, Jingdong and Christensen, Hans Erik Mølager

DTU users get better search results including licensed content and discounts on order fees.

Log in as DTU user

Access

Analysis