About

Log in?

DTU users get better search results including licensed content and discounts on order fees.

Anyone can log in and get personalized features such as favorites, tags and feeds.

Log in as DTU user Log in as non-DTU user No thanks

DTU Findit

Ahead of Print article ยท Journal article

Multi-Beam Focal Plane Arrays with Digital Beamforming for High Precision Space-Borne Ocean Remote Sensing

From

Chalmers University of Technology1

National Space Institute, Technical University of Denmark2

Microwaves and Remote Sensing, National Space Institute, Technical University of Denmark3

TICRA4

European Space Agency - ESA5

The present-day ocean remote sensing instruments that operate at low microwave frequencies are limited in spatial resolution and do not allow for monitoring of the coastal waters. This is due the difficulties of employing a large reflector antenna on a satellite platform, and generating high-quality pencil beams at multiple frequencies.

Recent advances in digital beamforming focal-plane-arrays (FPAs) have been exploited in the current work to overcome the above problems. A holistic design procedure for such novel multi-beam radiometers has been developed, where (i) the antenna system specifications are derived directly from the requirements to oceanographic surveys for future satellite missions; and (ii) the numbers of FPA elements/receivers are determined through a dedicated optimum beamforming procedure minimizing the distance to coast.

This approach has been applied to synthesize FPAs for two alternative radiometer systems: a conical scanner with an off-set parabolic reflector, and stationary wide-scan torus reflector system; each operating at C, X and Ku bands. Numerical results predict excellent beam performance for both systems with as low as 0:14 % total received power over the land.

Language: English
Publisher: IEEE
Year: 2018
Pages: 737-748
ISSN: 15582221 and 0018926x
Types: Ahead of Print article and Journal article
DOI: 10.1109/TAP.2017.2763174
ORCIDs: Skou, Niels

DTU users get better search results including licensed content and discounts on order fees.

Log in as DTU user

Access

Analysis