About

Log in?

DTU users get better search results including licensed content and discounts on order fees.

Anyone can log in and get personalized features such as favorites, tags and feeds.

Log in as DTU user Log in as non-DTU user No thanks

DTU Findit

Journal article

Hyperpolarized C-13 MRS Cardiac Metabolism Studies in Pigs: Comparison Between Surface and Volume Radiofrequency Coils

From

Department of Electrical Engineering, Technical University of Denmark1

Biomedical Engineering, Department of Electrical Engineering, Technical University of Denmark2

Cardiac metabolism assessment with hyperpolarized 13C magnetic resonance spectroscopy in pig models requires the design of dedicated coils capable of providing large field of view with high signal-to-noise ratio (SNR) data. This work presents a comparison between a commercial 13C quadrature birdcage coil and a homebuilt 13C circular coil both designed for hyperpolarized studies of pig heart with a clinical 3T scanner.

In particular, the simulation of the two coils is described by developing an SNR model for coil performance prediction and comparison. While coil resistances were calculated from Ohm’s law, the magnetic field patterns and sample-induced resistances were calculated using a numerical finite-difference time-domain algorithm.

After the numerical simulation of both coils, the results are presented as SNR-versus-depth profiles using experimental SNR extracted from the [1-13C]acetate phantom chemical shift image and with a comparison of metabolic maps acquired by hyperpolarized [1-13C]pyruvate injected in a pig. The accuracy of the developed SNR models was demonstrated by good agreement between the theoretical and experimental coil SNR-versus-depth profiles.

Language: English
Publisher: Springer Vienna
Year: 2012
Pages: 413-428
ISSN: 16137507 and 09379347
Types: Journal article
DOI: 10.1007/s00723-011-0307-4
ORCIDs: Ardenkjaer-Larsen, J. H.

DTU users get better search results including licensed content and discounts on order fees.

Log in as DTU user

Access

Analysis