About

Log in?

DTU users get better search results including licensed content and discounts on order fees.

Anyone can log in and get personalized features such as favorites, tags and feeds.

Log in as DTU user Log in as non-DTU user No thanks

DTU Findit

Journal article

Identification of Intracellular and Extracellular Metabolites in Cancer Cells Using 13C Hyperpolarized Ultrafast Laplace NMR

From

Texas A&M University1

University of Oulu2

Department of Electrical Engineering, Technical University of Denmark3

Center for Magnetic Resonance, Department of Electrical Engineering, Technical University of Denmark4

Ultrafast Laplace NMR (UF-LNMR), which is based on the spatial encoding of multidimensional data, enables one to carry out 2D relaxation and diffusion measurements in a single scan. Besides reducing the experiment time to a fraction, it significantly facilitates the use of nuclear spin hyperpolarization to boost experimental sensitivity, because the time-consuming polarization step does not need to be repeated.

Here we demonstrate the usability of hyperpolarized UF-LNMR in the context of cell metabolism, by investigating the conversion of pyruvateto lactate in the cultures of mouse 4T1 cancer cells. We show that 13C ultrafast diffusion–T2 relaxation correlation measurements, with the sensitivity enhanced by several orders of magnitude by dissolution dynamic nuclear polarization (D-DNP), allows the determination of the extra- vs intracellular location of metabolites because of their significantly different values of diffusion coefficients and T2 relaxation times.

Under the current conditions, pyruvate was located predominantlyin the extracellular pool, while lactate remained primarily intracellular. Contrary to the small flip angle diffusion methods reported in the literature, the UF-LNMR method does not require several scans with varying gradient strength, and it provides a combined diffusion and T2 contrast.

Furthermore, the ultrafast concept can be extended to various other multidimensional LNMR experiments, which will provide detailed information about the dynamics and exchange processes of cell metabolites.

Language: English
Publisher: American Chemical Society
Year: 2018
Pages: 11131-11137
ISSN: 15206882 , 00032700 and 15204782
Types: Journal article
DOI: 10.1021/acs.analchem.8b03096
ORCIDs: 0000-0003-0846-6852 , 0000-0003-2539-2568 and Lerche, Mathilde Hauge

DTU users get better search results including licensed content and discounts on order fees.

Log in as DTU user

Access

Analysis