About

Log in?

DTU users get better search results including licensed content and discounts on order fees.

Anyone can log in and get personalized features such as favorites, tags and feeds.

Log in as DTU user Log in as non-DTU user No thanks

DTU Findit

Journal article

Levels and transfer of 210Po and 210Pb in Nordic terrestrial ecosystems

From

Norwegian Radiation Protection Authority1

Radioecology and Tracer Studies, Radiation Research Division, Risø National Laboratory for Sustainable Energy, Technical University of Denmark2

Radiation Research Division, Risø National Laboratory for Sustainable Energy, Technical University of Denmark3

Risø National Laboratory for Sustainable Energy, Technical University of Denmark4

Norwegian Institute for Nature Research5

Radiation and Nuclear Safety Authority6

Recent developments regarding environmental impact assessment methodologies for radioactivity have precipitated the need for information on levels of naturally occurring radionuclides within and transfer to wild flora and fauna. The objectives of this study were therefore to determine activity concentrations of the main dose forming radionuclides 210Po and 210Pb in biota from terrestrial ecosystems thus providing insight into the behaviour of these radioisotopes.

Samples of soil, plants and animals were collected at Dovrefjell, Central Norway and Olkiluoto, Finland. Soil profiles from Dovrefjell exhibited an approximately exponential fall in 210Pb activity concentrations from elevated levels in humus/surface soils to “supported” levels at depth. Activity concentrations of 210Po in fauna (invertebrates, mammals, birds) ranged between 2 and 123 Bq kg−1 d.w. and in plants and lichens between 20 and 138 Bq kg−1 d.w..

The results showed that soil humus is an important reservoir for 210Po and 210Pb and that fauna in close contact with this media may also exhibit elevated levels of 210Po. Concentration ratios appear to have limited applicability with regards to prediction of activity concentrations of 210Po in invertebrates and vertebrates.

Biokinetic models may provide a tool to explore in a more mechanistic way the behaviour of 210Po in this system.

Language: English
Year: 2011
Pages: 430-437
ISSN: 18791700 and 0265931x
Types: Journal article
DOI: 10.1016/j.jenvrad.2010.06.016

DTU users get better search results including licensed content and discounts on order fees.

Log in as DTU user

Access

Analysis