About

Log in?

DTU users get better search results including licensed content and discounts on order fees.

Anyone can log in and get personalized features such as favorites, tags and feeds.

Log in as DTU user Log in as non-DTU user No thanks

DTU Findit

Journal article

The impact of turbulence intensity and atmospheric stability on power deficits due to wind turbine wakes at Horns Rev wind farm : Power deficits in offshore wind farms

From

Fluid Mechanics, Department of Mechanical Engineering, Technical University of Denmark1

Department of Mechanical Engineering, Technical University of Denmark2

Indiana University-Purdue University Indianapolis3

Ørsted A/S4

Vattenfall5

The wind turbine operational characteristics, power measurements and meteorological measurements from Horns Rev offshore wind farm have been identified, synchronized, quality screened and stored in a common database as 10 min statistical data. A number of flow cases have been identified to describe the flow inside the wind farm, and the power deficits along rows of wind turbines have been determined for different inflow directions and wind speed intervals.

A method to classify the atmospheric stability based on the Bulk-Ri number has been implemented. Long-term stability conditions have been established, which confirms, in line with previous results, that conditions tend towards near neutral as wind speeds increase but that both stable and unstable conditions are present at wind speeds up to 15 m s1.

Moreover, there is a strong stability directional dependence with southerly winds having fewer unstable conditions, whereas northerly winds have fewer observations in the stable classes. Stable conditions also tend to be associated with lower levels of turbulence intensity, and this relationship persists as wind speeds increase.

Power deficit is a function of ambient turbulence intensity. The level of power deficit is strongly dependent on the wind turbine spacing; as turbulence intensity increases, the power deficit decreases. The power deficit is determined for four different wind turbine spacing distances and for stability classified as very stable, stable and others (near neutral to very unstable).

The more stable the conditions are, the larger the power deficit.

Language: English
Publisher: John Wiley & Sons, Ltd
Year: 2012
Pages: 183-196
ISSN: 10954244 and 10991824
Types: Journal article
DOI: 10.1002/we.512
ORCIDs: Hansen, Kurt Schaldemose

DTU users get better search results including licensed content and discounts on order fees.

Log in as DTU user

Access

Analysis