About

Log in?

DTU users get better search results including licensed content and discounts on order fees.

Anyone can log in and get personalized features such as favorites, tags and feeds.

Log in as DTU user Log in as non-DTU user No thanks

DTU Findit

Journal article

Feruloylated and Nonferuloylated Arabino-oligosaccharides from Sugar Beet Pectin Selectively Stimulate the Growth of Bifidobacterium spp. in Human Fecal in Vitro Fermentations

From

Center for BioProcess Engineering, Department of Chemical and Biochemical Engineering, Technical University of Denmark1

Department of Chemical and Biochemical Engineering, Technical University of Denmark2

University of Southern Denmark3

Division of Microbiology and Risk Assessment, National Food Institute, Technical University of Denmark4

National Food Institute, Technical University of Denmark5

The side chains of the rhamnogalacturonan I fraction in sugar beet pectin are particularly rich in arabinan moieties, which may be substituted with feruloyl groups. In this work the arabinan-rich fraction resulting from sugar beet pulp based pectin production was separated by Amberlite XAD hydrophobic interaction and membrane separation into four fractions based on feruloyl substitution and arabino-oligosaccharide chain length: short-chain (DP 2–10) and long-chain (DP 7–14) feruloylated and nonferuloylated arabino-oligosaccharides, respectively.

HPAEC, SEC, and MALDI-TOF/TOF analyses of the fractions confirmed the presence of singly and doubly substituted feruloylated arabino-oligosaccharides in the feruloyl-substituted fractions. In vitro microbial fermentation by human fecal samples (n = 6 healthy human volunteers) showed a selective stimulation of bifidobacteria by both the feruloylated and the nonferuloylated long-chain arabino-oligosaccharides to the same extent as the prebiotic fructo-oligosaccharides control.

None of the fractions stimulated the growth of the potential pathogen Clostridium difficile in monocultures. This work provides a first report on the separation of potentially bioactive feruloylated arabino-oligosaccharides from sugar beet pulp and an initial indication of the potentially larger bifidogenic effect of relatively long-chain arabino-oligosaccharides as opposed to short-chain arabino-oligosaccharides.

Language: English
Year: 2011
Pages: 6511-6519
ISSN: 15205118 and 00218561
Types: Journal article
DOI: 10.1021/jf200996h
ORCIDs: Holck, Jesper , Licht, Tine Rask , Mikkelsen, Jørn Dalgaard and Meyer, Anne S.

DTU users get better search results including licensed content and discounts on order fees.

Log in as DTU user

Access

Analysis