About

Log in?

DTU users get better search results including licensed content and discounts on order fees.

Anyone can log in and get personalized features such as favorites, tags and feeds.

Log in as DTU user Log in as non-DTU user No thanks

DTU Findit

Journal article

Voltammetry and in situ scanning tunnelling spectroscopy of osmium, iron, and ruthenium complexes of 2,2′:6′,2′′-terpyridine covalently linked to Au(111)-electrodes

From

NanoChemistry, Department of Chemistry, Technical University of Denmark1

Department of Chemistry, Technical University of Denmark2

Department of Physics, Technical University of Denmark3

Center for Nanoteknologi, Centers, Technical University of Denmark4

We have studied self-assembled molecular monolayers (SAMs) of complexes between Os(ii)/(iii), Fe(ii)/(iii), and Ru(ii)/(iii) and a 2,2′,6′,2′′-terpyridine (terpy) derivative linked to Au(111)-electrode surfaces via a 6-acetylthiohexyloxy substituent at the 4′-position of terpy. The complexes were prepared in situ by first linking the terpy ligand to the surface via the S-atom, followed by addition of suitable metal compounds.

The metal-terpy SAMs were studied by cyclic voltammetry (CV), and in situ scanning tunnelling microscopy with full electrochemical potential control of substrate and tip (in situ STM). Sharp CV peaks were observed for the Os- and Fe complexes, with interfacial electrochemical electron transfer rate constants of 6–50 s−1.

Well-defined but significantly broader peaks (up to 300 mV) were observed for the Ru-complex. Addition of 2,2′-bipyridine (bipy) towards completion of the metal coordination spheres induced voltammetric sharpening. In situ STM images of single molecular scale strong structural features were observed for the osmium and iron complexes.

As expected from the voltammetric patterns, the surface coverage was by far the highest for the Ru-complex which was therefore selected for scanning tunnelling spectroscopy. These correlations displayed a strong peak around the equilibrium potential with systematic shifts with increasing bias voltage, as expected for a sequential two-step in situ ET mechanism.

Language: English
Publisher: The Royal Society of Chemistry
Year: 2011
Pages: 14394-14403
ISSN: 14639084 and 14639076
Types: Journal article
DOI: 10.1039/c1cp21197h
ORCIDs: 0000-0002-8908-1657

DTU users get better search results including licensed content and discounts on order fees.

Log in as DTU user

Access

Analysis