About

Log in?

DTU users get better search results including licensed content and discounts on order fees.

Anyone can log in and get personalized features such as favorites, tags and feeds.

Log in as DTU user Log in as non-DTU user No thanks

DTU Findit

Journal article

Structural and microstructural changes during anion exchange of CoAl layered double hydroxides: an in situ X-ray powder diffraction study

From

Nano-Microstructures in Materials, Materials Research Division, Risø National Laboratory for Sustainable Energy, Technical University of Denmark1

Materials Research Division, Risø National Laboratory for Sustainable Energy, Technical University of Denmark2

Risø National Laboratory for Sustainable Energy, Technical University of Denmark3

Swiss Federal Institute of Technology Zurich4

Anion-exchange processes in cobalt-aluminium layered double hydroxides (LDHs) were studied by in situ synchrotron X-ray powder diffraction (XRPD). The processes investigated were CoAl-CO3 CoAl-Cl CoAl-CO3, CoAl-Cl CoAl-NO3 and CoAl-CO3 CoAl-SO4. The XRPD data show that the CoAl-CO3 CoAl-Cl process is a two-phase transformation, where the amount of the CoAl-CO3 phase decreases exponentially while that of the CoAl-Cl phase increases exponentially.

Energy-dispersive X-ray spectroscopy (EDXS) studies of a partially chloride-exchanged CoAl-CO3 LDH sample along with in situ XRPD data suggested that the individual particles in the CoAl-CO3 sample are generally anion-exchanged with chloride one at a time. In contrast with the CoAl-CO3 CoAl-Cl transformation, the XRPD data show that the reverse CoAl-Cl CoAl-CO3 process is a one-phase transformation.

Rietveld refinements indicate that the occupancy factors of the carbon and oxygen sites of the carbonate group increase, while that of the chloride site decreases. In the CoAl-Cl CoAl-NO3 anion-exchange reaction, the XRPD patterns reveal the existence of two intermediate phases in addition to the initial CoAl-Cl and final CoAl-NO3 phases.

The in situ data indicate that one of these intermediates is a mixed nitrate- and chloride-based LDH phase, where the disorder decreases as the nitrate content increases. The XRPD data of the partial CoAl-CO3 CoAl-SO4 anion-exchange reaction show that the process is a two-phase transformation involving a sulfate-containing LDH with a 1H polytype structure.

Language: English
Year: 2010
Pages: 434-447
ISSN: 16005767 and 00218898
Types: Journal article
DOI: 10.1107/S0021889810011805
ORCIDs: Johnsen, Rune and Norby, Poul

DTU users get better search results including licensed content and discounts on order fees.

Log in as DTU user

Access

Analysis