About

Log in?

DTU users get better search results including licensed content and discounts on order fees.

Anyone can log in and get personalized features such as favorites, tags and feeds.

Log in as DTU user Log in as non-DTU user No thanks

DTU Findit

Journal article

Aesthetically Pleasing Conjugated Polymer:Fullerene Blends for Blue-Green Solar Cells Via Roll-to-Roll Processing

From

Department of Energy Conversion and Storage1

Department of Materials Science and Engineering and The George and Josephine Butler Polymer Research Laboratory2

The practical application of organic photovoltaic (OPV) cells requires high throughput printing techniques in order to attain cells with an area large enough to provide useful amounts of power. However, in the laboratory screening of new materials for OPVs, spin-coating is used almost exclusively as a thin-film deposition technique due its convenience.

We report on the significant differences between the spin-coating of laboratory solar cells and slot-die coating of a blue-green colored, low bandgap polymer (PGREEN). This is one of the first demonstrations of slot-die-coated polymer solar cells OPVs not utilizing poly(3-hexylthiophene):(6,6)-phenyl-C61-butyric acid methyl ester (PCBM) blends as a light absorbing layer.

Through synthetic optimization, we show that strict protocols are necessary to yield polymers which achieve consistent photovoltaic behavior. We fabricated spin-coated laboratory scale OPV devices with PGREEN: PCBM blends as active light absorbing layers, and compare performance to slot die-coated individual solar cells, and slot-die-coated solar modules consisting of many cells connected in series.

We find that the optimum ratio of polymer to PCBM varies significantly when changing from spin-coating of thinner active layer films to slot-die coating, which requires somewhat thicker films. We also demonstrate the detrimental impacts on power conversion efficiency of high series resistance imparted by large electrodes, illustrating the need for higher conductivity contacts, transparent electrodes, and high mobility active layer materials for large-area solar cell modules.

Language: English
Publisher: American Chemical Society
Year: 2012
Pages: 1847-1853
ISSN: 19448252 and 19448244
Types: Journal article
DOI: 10.1021/am300156p

DTU users get better search results including licensed content and discounts on order fees.

Log in as DTU user

Access

Analysis