About

Log in?

DTU users get better search results including licensed content and discounts on order fees.

Anyone can log in and get personalized features such as favorites, tags and feeds.

Log in as DTU user Log in as non-DTU user No thanks

DTU Findit

Journal article · Preprint article

Electron and phonon transport in silicon nanowires: Atomistic approach to thermoelectric properties

From

Theoretical Nanoelectronics Group, Theory Section, Department of Micro- and Nanotechnology, Technical University of Denmark1

Theory Section, Department of Micro- and Nanotechnology, Technical University of Denmark2

Department of Micro- and Nanotechnology, Technical University of Denmark3

We compute both electron and phonon transmissions in thin disordered silicon nanowires (SiNWs). Our atomistic approach is based on tight-binding and empirical potential descriptions of the electronic and phononic systems, respectively. Surface disorder is modeled by introducing surface silicon vacancies.

It is shown that the average phonon and electron transmissions through long SiNWs containing many vacancies can be accurately estimated from the scattering properties of the isolated vacancies using a recently proposed averaging method [Markussen et al., Phys. Rev. Lett. 99, 076803 (2007)]. We apply this averaging method to surface disordered SiNWs in the diameter range of 1–3 nm to compute the thermoelectric figure of merit ZT.

It is found that the phonon transmission is affected more by the vacancies than the electronic transmission leading to an increased thermoelectric performance of disordered wires, in qualitative agreement with recent experiments. The largest ZT>3 is found in strongly disordered 111-oriented wires with a diameter of 2 nm.

Language: English
Year: 2009
Pages: 8
ISSN: 10953795 , 1550235x , 01631829 and 10980121
Types: Journal article and Preprint article
DOI: 10.1103/PhysRevB.79.035415
ORCIDs: Jauho, Antti-Pekka and Brandbyge, Mads
Other keywords

cond-mat.mes-hall

DTU users get better search results including licensed content and discounts on order fees.

Log in as DTU user

Access

Analysis