About

Log in?

DTU users get better search results including licensed content and discounts on order fees.

Anyone can log in and get personalized features such as favorites, tags and feeds.

Log in as DTU user Log in as non-DTU user No thanks

DTU Findit

Journal article

Design optimization of the distributed modal filtering rod fiber for increasing single mode bandwidth

From

Department of Photonics Engineering, Technical University of Denmark1

Fiber Optics, Devices and Non-linear Effects, Department of Photonics Engineering, Technical University of Denmark2

NKT Group3

High-power fiber amplifiers for pulsed applications require large mode area (LMA) fibers having high pump absorption and near diffraction limited output. This improves the limiting factor of nonlinear effects, while maintaining good beam quality. Photonic crystal fibers allow realization of short LMA fiber amplifiers having high pump absorption through a pump cladding that is decoupled from the outer fiber.

However, achieving ultra low NA for single-mode (SM) guidance is challenging, and thus different design strategies must be applied to filter out higher order modes (HOMs). The novel distributed modal filtering (DMF) design presented here enables SM guidance, and previous results have shown a SM mode field diameter of 60 μm operating in a 20 nm SM bandwidth.

The DMF rod fiber has high index ring-shaped inclusions acting as resonators enabling SM guidance through modal filtering of HOMs. Large preform tolerances are compensated during the fiber draw resulting in ultra low NA fibers with very large cores. In this paper, design optimization of the SM bandwidth of the DMF rod fiber is presented.

Analysis of band gap properties results in a fourfold increase of the SM bandwidth compared to previous results, achieved by utilizing the first band of cladding modes. This covers of a large fraction of the Yb emission band, where wavelengths of 1030 nm and 1064 nm can be included.

Language: English
Year: 2012
Pages: 82373P-10
Proceedings: SPIE Photonics West : Fiber Lasers IX: Technology, Systems, and Applications
ISSN: 1996756x and 0277786x
Types: Journal article
DOI: 10.1117/12.908246
ORCIDs: Jørgensen, Mette Marie and Lægsgaard, Jesper

DTU users get better search results including licensed content and discounts on order fees.

Log in as DTU user

Access

Analysis