About

Log in?

DTU users get better search results including licensed content and discounts on order fees.

Anyone can log in and get personalized features such as favorites, tags and feeds.

Log in as DTU user Log in as non-DTU user No thanks

DTU Findit

Journal article

Metal recovery from high-grade WEEE: A life cycle assessment

From

Residual Resource Engineering, Department of Environmental Engineering, Technical University of Denmark1

Department of Environmental Engineering, Technical University of Denmark2

Based on available data in the literature the recovery of aluminium, copper, gold, iron, nickel, palladium and silver from high-grade WEEE was modeled by LCA. The pre-treatment of WEEE included manual sorting, shredding, magnetic sorting, Eddy-current sorting, air classification and optical sorting.

The modeled metallurgical treatment facility included a Kaldo plant, a converter aisle, an anode refinery and a precious metal refinery. The metallurgic treatment showed significant environmental savings when credited the environmental load from avoided production of the same amount of metals by mining and refining of ore.

The resource recovery per tonne of high-grade WEEE ranged from 2 g of palladium to 386 kg of iron. Quantified in terms of person-equivalents the recovery of palladium, gold, silver, nickel and copper constituted the major environmental benefit of the recovery of metals from WEEE. These benefits are most likely underestimated in the model, since we did not find adequate data to include all the burdens from mining and refining of ore; burdens that are avoided when metals are recovered from WEEE.

The processes connected to the pre-treatment of WEEE were found to have little environmental effect compared to the metallurgical treatment. However only 12-26% of silver, gold and palladium are recovered during pre-treatment, which suggest that the reduction of the apparent losses of precious metals as palladium, gold and silver during pre-treatment of WEEE is of environmental importance.

Our results support in a quantitative manner that metal recovery from WEEE should be quantified with respect to the individual metals recovered and not as a bulk metal recovery rate.

Language: English
Year: 2012
Pages: 8-14
ISSN: 18733336 and 03043894
Types: Journal article
DOI: 10.1016/j.jhazmat.2011.10.001
ORCIDs: Brogaard, Line Kai-Sørensen and Christensen, Thomas Højlund

DTU users get better search results including licensed content and discounts on order fees.

Log in as DTU user

Access

Analysis