About

Log in?

DTU users get better search results including licensed content and discounts on order fees.

Anyone can log in and get personalized features such as favorites, tags and feeds.

Log in as DTU user Log in as non-DTU user No thanks

DTU Findit

Journal article

Spatio-temporal variation in marine fish traits reveals community-wide responses to environmental change

From

National Institute of Aquatic Resources, Technical University of Denmark1

Centre for Ocean Life, National Institute of Aquatic Resources, Technical University of Denmark2

Marine ecosystems are exposed to a range of environmental and anthropogenic stressors, including climate change and overexploitation. A promising way towards understanding the impacts of such stressors on community composition is by considering species traits rather than species identity. Here, we describe the spatio-temporal dynamics in fish community traits using >30 yr of species abundance data from the North Sea combined with trait information on body size, life history, growth rate, reproduction and trophic level for demersal fish species in the area.

We assessed whether the derived patterns and trends in community-weighted mean traits could be explained by a range of environmental stressors and fishing. Our results revealed strong spatial structuring and long-term changes in the trait composition of North Sea fish, with temporal changes not being uniformly distributed in space.

Among the environmental drivers investigated, depth was one of the best predictors, primarily explaining the spatial variation in lifespan, growth rate, trophic level and fecundity. This can be explained by variables that co-vary with depth, e.g. temperature, seasonality, salinity and productivity. Finally, we found only weak relationships between fishing and the spatial variation of traits, suggesting that the spatial trait composition of the community is mostly determined by the environment.

Yet, long-term changes in trait composition, primarily in body size, have previously been shown to be affected by size-selective fishing. Our study exemplifies how traits can be used to summarize complex community dynamics and responses to environmental and anthropogenic stressors as well as their usefulness for ecosystembased management

Language: English
Year: 2019
Pages: 205-222
ISSN: 16161599 and 01718630
Types: Journal article
DOI: 10.3354/meps12826
ORCIDs: Beukhof, Esther , Dencker, Tim S. and Lindegren, Martin

DTU users get better search results including licensed content and discounts on order fees.

Log in as DTU user

Access

Analysis