About

Log in?

DTU users get better search results including licensed content and discounts on order fees.

Anyone can log in and get personalized features such as favorites, tags and feeds.

Log in as DTU user Log in as non-DTU user No thanks

DTU Findit

Journal article

Reducing the computational requirements for simulating tunnel fires by combining multiscale modelling and multiple processor calculation

From

Technical University of Denmark1

Imperial College London2

Exponent, Inc.3

Greater Copenhagen Fire Department4

Department of Civil Engineering, Technical University of Denmark5

Section for Building Design, Department of Civil Engineering, Technical University of Denmark6

Multiscale modelling of tunnel fires that uses a coupled 3D (fire area) and 1D (the rest of the tunnel) model is seen as the solution to the numerical problem of the large domains associated with long tunnels. The present study demonstrates the feasibility of the implementation of this method in FDS version 6.0, a widely used fire-specific, open source CFD software.

Furthermore, it compares the reduction in simulation time given by multiscale modelling with the one given by the use of multiple processor calculation. This was done using a 1200m long tunnel with a rectangular cross-section as a demonstration case. The multiscale implementation consisted of placing a 30MW fire in the centre of a 400m long 3D domain, along with two 400m long 1D ducts on each side of it, that were again bounded by two nodes each.

A fixed volume flow was defined in the upstream duct and the two models were coupled directly. The feasibility analysis showed a difference of only 2% in temperature results from the published reference work that was performed with Ansys Fluent (Colella et al., 2010). The reduction in simulation time was significantly larger when using multiscale modelling than when performing multiple processor calculation (97% faster when using a single mesh and multiscale modelling; only 46% faster when using the full tunnel and multiple meshes).

In summary, it was found that multiscale modelling with FDS v.6.0 is feasible, and the combination of multiple meshes and multiscale modelling was established as the most efficient method for reduction of the calculation times while still maintaining accurate results. Still, some unphysical flow oscillations were predicted by FDS v.6.0 and such results must be treated carefully.

Language: English
Year: 2017
Pages: 146-153
ISSN: 18784364 and 08867798
Types: Journal article
DOI: 10.1016/j.tust.2016.12.016
ORCIDs: Jomaas, Grunde

DTU users get better search results including licensed content and discounts on order fees.

Log in as DTU user

Access

Analysis