About

Log in?

DTU users get better search results including licensed content and discounts on order fees.

Anyone can log in and get personalized features such as favorites, tags and feeds.

Log in as DTU user Log in as non-DTU user No thanks

DTU Findit

Journal article

Rock physics model of glauconitic greensand from the North Sea

In Geophysics 2011, Volume 76, Issue 6, pp. E199-E209
From

Department of Civil Engineering, Technical University of Denmark1

Stanford University2

Section for Geotechnics and Geology, Department of Civil Engineering, Technical University of Denmark3

Center for Energy Resources Engineering, Centers, Technical University of Denmark4

The objective of this study was to establish a rock physics model of North Sea Paleogene greensand. The Hertz-Mindlin contact model is widely used to calculate elastic velocities of sandstone as well as to calculate the initial sand-pack modulus of the soft-sand, stiff-sand, and intermediate-stiff-sand models.

When mixed minerals in rock are quite different, e.g., mixtures of quartz and glauconite in greensand, the Hertz-Mindlin contact model of single type of grain may not be enough to predict elastic velocity. Our approach is first to develop a Hertz-Mindlin contact model for a mixture of quartz and glauconite.

Next, we use this Hertz-Mindlin contact model of two types of grains as the initial modulus for a soft-sand model and a stiff-sand model. By using these rock physics models, we examine the relationship between elastic modulus and porosity in laboratory and logging data and link rock-physics properties to greensand diagenesis.

Calculated velocity for mixtures of quartz and glauconite from the Hertz-Mindlin contact model for two types of grains are higher than velocity calculated from the Hertz-Mindlin single mineral model using the effective mineral moduli predicted from the Hill's average. Results of rock-physics modeling and thin-section observations indicate that variations in the elastic properties of greensand can be explained by two main diagenetic phases: silica cementation and berthierine cementation.

These diagenetic phases dominate the elastic properties of greensand reservoir. Initially, greensand is a mixture of mainly quartz and glauconite; when weakly cemented, it has relatively low elastic modulus and can be modeled by a Hertz-Mindlin contact model of two types of grains. Silica-cemented greensand has a relatively high elastic modulus and can be modeled by an intermediate-stiff-sand or a stiff-sand model.

Berthierine cement has different growth patterns in different parts of the greensand, resulting in a soft-sand model and an intermediate-stiff-sand model. © 2012 Society of Exploration Geophysicists.

Language: English
Year: 2011
Pages: E199-E209
ISSN: 19422156 and 00168033
Types: Journal article
DOI: 10.1190/geo2010-0366.1
ORCIDs: Fabricius, Ida Lykke

DTU users get better search results including licensed content and discounts on order fees.

Log in as DTU user

Access

Analysis