About

Log in?

DTU users get better search results including licensed content and discounts on order fees.

Anyone can log in and get personalized features such as favorites, tags and feeds.

Log in as DTU user Log in as non-DTU user No thanks

DTU Findit

Journal article

Observed development of the vertical structure of the marine boundary layer during the LASIE experiment in the Ligurian Sea

From

Meteorology, Wind Energy Division, Risø National Laboratory for Sustainable Energy, Technical University of Denmark1

Wind Energy Division, Risø National Laboratory for Sustainable Energy, Technical University of Denmark2

Risø National Laboratory for Sustainable Energy, Technical University of Denmark3

National Research Council of Italy4

University of the Azores5

Danish Centre for Environment and Energy6

California Institute of Technology7

In the marine environment, complete datasets describing the surface layer and the vertical structure of the Marine Atmospheric Boundary Layer (MABL), through its entire depth, are less frequent than over land, due to the high cost of measuring campaigns. During the seven days of the Ligurian Air-Sea Interaction Experiment (LASIE), organized by the NATO Undersea Research Centre (NURC) in the Mediterranean Sea, extensive in situ and remote sensing measurements were collected from instruments placed on a spar buoy and a ship.

Standard surface meteorological measurements were collected by meteorological sensors mounted on the buoy ODAS Italia1 located in the centre of the Gulf of Genoa. The evolution of the height (zi) of the MABL was monitored using radiosondes and a ceilometer on board of the N/O Urania. Here, we present the database and an uncommon case study of the evolution of the vertical structure of the MABL, observed by two independent measuring systems: the ceilometer and radiosondes.

Following the changes of surface flow conditions, in a sequence of onshore – offshore – onshore wind direction shifting episodes, during the mid part of the campaign, the overall structure of the MABL changed. Warm and dry air from land advected over a colder sea, induced a stably stratified Internal Boundary Layer (IBL) and a consequent change in the structure of the vertical profiles of potential temperature and relative humidity.

Language: English
Publisher: Copernicus Publications
Year: 2010
Pages: 17-25
ISSN: 14320576 and 09927689
Types: Journal article
DOI: 10.5194/angeo-28-17-2010
ORCIDs: 0000-0002-9823-589X and Sempreviva, Anna Maria

DTU users get better search results including licensed content and discounts on order fees.

Log in as DTU user

Access

Analysis