About

Log in?

DTU users get better search results including licensed content and discounts on order fees.

Anyone can log in and get personalized features such as favorites, tags and feeds.

Log in as DTU user Log in as non-DTU user No thanks

DTU Findit

Journal article

On the Use of Laguerre Tessellations for Representations of 3D Grain Structures

From

Metal Structures in Four Dimensions, Materials Research Division, Risø National Laboratory for Sustainable Energy, Technical University of Denmark1

Materials Research Division, Risø National Laboratory for Sustainable Energy, Technical University of Denmark2

Risø National Laboratory for Sustainable Energy, Technical University of Denmark3

European Synchrotron Radiation Facility4

Naval Research Laboratory5

Accurate descriptions of 3D grain structures in polycrystalline materials are of key interest as the grain structure is closely correlated to the macroscopic properties of the material. In the present study, we investigate the accuracy of using Laguerre tessellations to represent 3D grain structures from only the spatial center of mass location and the volume of the grains.

The ability of Laguerre tessellations to describe accurate grain shapes and topologies of real 3D grain structures are revealed by direct comparison to 3D reconstructions of an un-deformed meta-stable β -titanium alloy obtained by phase-contrast micro-tomography. This study reveals that (volume weighted) Laguerre tessellations are superior to classical Voronoi tessellations when it comes to providing accurate representations of real 3D grain structures.

Furthermore, although the Laguerre tessellations were only able to correctly describe the local arrangements of grains (i.e., the grain neighbors and number of grain facets) for 31.8% of the investigated grains, the Laguerre tessellations were able to accurately describe statistical grain characteristics such as grain size distributions and grain neighbor distributions.

Language: English
Year: 2011
Pages: 165-170
ISSN: 15272648 and 14381656
Types: Journal article
DOI: 10.1002/adem.201000258
ORCIDs: Poulsen, Henning Friis

DTU users get better search results including licensed content and discounts on order fees.

Log in as DTU user

Access

Analysis