About

Log in?

DTU users get better search results including licensed content and discounts on order fees.

Anyone can log in and get personalized features such as favorites, tags and feeds.

Log in as DTU user Log in as non-DTU user No thanks

DTU Findit

Journal article

Permeability prediction in chalks

From

Section for Geotechnics and Geology, Department of Civil Engineering, Technical University of Denmark1

Department of Civil Engineering, Technical University of Denmark2

Colorado School of Mines3

Center for Energy Resources Engineering, Centers, Technical University of Denmark4

The velocity of elastic waves is the primary datum available for acquiring information about subsurface characteristics such as lithology and porosity. Cheap and quick (spatial coverage, ease of measurement) information of permeability can be achieved, if sonic velocity is used for permeability prediction, so we have investigated the use of velocity data to predict permeability.

The compressional velocity fromwireline logs and core plugs of the chalk reservoir in the South Arne field, North Sea, has been used for this study. We compared various methods of permeability prediction from velocities. The relationships between permeability and porosity from core data were first examined using Kozeny’s equation.

The data were analyzed for any correlations to the specific surface of the grain, Sg, and to the hydraulic property defined as the flow zone indicator (FZI). These two methods use two different approaches to enhance permeability prediction fromKozeny’s equation. The FZI is based on a concept of a tortuous flow path in a granular bed.

The Sg concept considers the pore space that is exposed to fluid flow and models permeability resulting from effective flow parallel to pressure drop. The porosity-permeability relationships were replaced by relationships between velocity of elastic waves and permeability using laboratory data, and the relationships were then applied to well-log data.

We found that the permeability prediction in chalk and possibly other sediments with large surface areas could be improved significantly using the effective specific surface as the fluid-flow concept. The FZI unit is appropriate for highly permeable sedimentary rocks such as sandstones and limestones that have small surface areas.

Language: English
Year: 2011
Pages: 1991-2014
ISSN: 15589153 , 03649849 and 01491423
Types: Journal article
DOI: 10.1306/03011110172
ORCIDs: Fabricius, Ida Lykke

DTU users get better search results including licensed content and discounts on order fees.

Log in as DTU user

Access

Analysis