About

Log in?

DTU users get better search results including licensed content and discounts on order fees.

Anyone can log in and get personalized features such as favorites, tags and feeds.

Log in as DTU user Log in as non-DTU user No thanks

DTU Findit

Journal article

Profiling microRNAs in lung tissue from pigs infected with Actinobacillus pleuropneumoniae

From

University of Copenhagen1

National Veterinary Institute, Technical University of Denmark2

Section for Immunology and Vaccinology, National Veterinary Institute, Technical University of Denmark3

Background: MicroRNAs (miRNAs) are a class of non-protein-coding genes that play a crucial regulatory role in mammalian development and disease. Whereas a large number of miRNAs have been annotated at the structural level during the latest years, functional annotation is sparse. Actinobacillus pleuropneumoniae (APP) causes serious lung infections in pigs.

Severe damage to the lungs, in many cases deadly, is caused by toxins released by the bacterium and to some degree by host mediated tissue damage. However, understanding of the role of microRNAs in the course of this infectious disease in porcine is still very limited. Results: In this study, the RNA extracted from visually unaffected and necrotic tissue from pigs infected with Actinobacillus pleuropneumoniae was subjected to small RNA deep sequencing.

We identified 169 conserved and 11 candidate novel microRNAs in the pig. Of these, 17 were significantly up-regulated in the necrotic sample and 12 were down-regulated. The expression analysis of a number of candidates revealed microRNAs of potential importance in the innate immune response. MiR-155, a known key player in inflammation, was found expressed in both samples.

Moreover, miR-664-5p, miR-451 and miR-15a appear as very promising candidates for microRNAs involved in response to pathogen infection. Conclusions: This is the first study revealing significant differences in composition and expression profiles of miRNAs in lungs infected with a bacterial pathogen.

Our results extend annotation of microRNA in pig and provide insight into the role of a number of microRNAs in regulation of bacteria induced immune and inflammatory response in porcine lung.

Language: English
Publisher: BioMed Central
Year: 2012
Pages: 459-459
ISSN: 14712164
Types: Journal article
DOI: 10.1186/1471-2164-13-459
ORCIDs: 0000-0003-2762-1002 , Skovgaard, Kerstin and Heegaard, Peter M. H.

DTU users get better search results including licensed content and discounts on order fees.

Log in as DTU user

Access

Analysis