About

Log in?

DTU users get better search results including licensed content and discounts on order fees.

Anyone can log in and get personalized features such as favorites, tags and feeds.

Log in as DTU user Log in as non-DTU user No thanks

DTU Findit

Journal article

Independent component analysis of high-resolution imaging data identifies distinct functional domains

From

Heidelberg University 1

Dynamical systems, Department of Mathematics, Technical University of Denmark2

Department of Mathematics, Technical University of Denmark3

Weizmann Institute of Science4

Max Planck Institute5

In the vertebrate brain external stimuli are often represented in distinct functional domains distributed across the cortical surface. Fast imaging techniques used to measure patterns of population activity record movies with many pixels and many frames, i.e. data sets with high dimensionality. Here we demonstrate that principal component analysis (PCA) followed by spatial independent component analysis (sICA), can be exploited to reduce the dimensionality of data sets recorded in the olfactory bulb and the somatosensory cortex of mice as well as the visual cortex of monkeys, without loosing the stimulus specific responses.

Different neuronal populations are separated based on their stimulus specific time courses of activation. Both, spatial and temporal response characteristics can be objectively obtained, simultaneously. In the olfactory bulb, groups of glomeruli with different response latencies can be identified. This is shown for recordings of olfactory receptor neuron input measured with a calcium sensitive axon tracer and for network dynamics measured with the voltage sensitive dye RH 1838.

In the somatosensory cortex, barrels responding to the stimulation of single whiskers can be automatically detected. In the visual cortex orientation columns can be extracted. In all cases artifacts due to movement, heartbeat or respiration were separated from the functional signal by sICA and could be removed from the data set. sICA is therefore a powerful technique for data compression, unbiased analysis and dissection of imaging data of population activity, collected with high spatial and temporal resolution.

Language: English
Publisher: Academic Press
Year: 2007
Pages: 94-108
ISBN: 0262026902 , 0262322129 , 9780262026901 and 9780262322126
ISSN: 10959572 , 10538119 and 22131582
Types: Journal article
DOI: 10.1016/j.neuroimage.2006.08.031
ORCIDs: Starke, Jens

DTU users get better search results including licensed content and discounts on order fees.

Log in as DTU user

Access

Analysis