About

Log in?

DTU users get better search results including licensed content and discounts on order fees.

Anyone can log in and get personalized features such as favorites, tags and feeds.

Log in as DTU user Log in as non-DTU user No thanks

DTU Findit

Journal article

Development of Au-Ge based candidate alloys as an alternative to high-lead content solders

From

Manufacturing Engineering, Department of Mechanical Engineering, Technical University of Denmark1

Department of Mechanical Engineering, Technical University of Denmark2

Materials and Surface Engineering, Department of Mechanical Engineering, Technical University of Denmark3

Au-Ge based candidate alloys have been proposed as an alternative to high-lead content solders that are currently being used for high-temperature applications. The changes in microstructure and microhardness associated with the addition of low melting point metals namely In, Sb and Sn to the Au-Ge eutectic were investigated in this work.

Furthermore, the effects of thermal aging on the microstructure and its corresponding microhardness of these promising candidate alloys have been extensively reported. To investigate the effects of aging temperature, candidate alloys were aged at a lower temperature, 150°C for up to 3 weeks and compared with aging at 200°C.

After being subjected to high-temperature aging, the microstructure varied a lot in morphology in the case of both Au-Ge-Sb and Au-Ge-Sn candidate alloys while the microstructure remained relatively stable even after long-term thermal aging in the case of the Au-Ge-In candidate alloy. The microhardness measurement is well correlated with the solubility and reactivity of these alloying elements, characteristics of their intermetallic compounds (IMCs) and the distribution of phases.

The primary strengthening mechanism in the case of Au-Ge-In and Au-Ge-Sn combinations was determined to be the classic solid solution strengthening. The Au-Ge-Sb combination was primarily strengthened by the refined (Ge) dispersed phase. The aging temperature had a significant influence on the microhardness in the case of the Au-Ge-Sn candidate alloy.

The distribution of phases played a relatively more crucial role in determining the ductility of the bulk solder alloy. The findings of this work are: the addition of Sb to the Au-Ge eutectic would not only decrease its melting point but would also improve its ductility substantially and the lattice strains induced by the In atoms were the most effective strengthening mechanism.

Language: English
Year: 2010
Pages: 170-179
ISSN: 18734669 and 09258388
Types: Journal article
DOI: 10.1016/j.jallcom.2009.10.108
ORCIDs: Hald, John and Hattel, Jesper Henri

DTU users get better search results including licensed content and discounts on order fees.

Log in as DTU user

Access

Analysis