About

Log in?

DTU users get better search results including licensed content and discounts on order fees.

Anyone can log in and get personalized features such as favorites, tags and feeds.

Log in as DTU user Log in as non-DTU user No thanks

DTU Findit

Journal article · Preprint article

Shear flow generation and energetics in electromagnetic turbulence

From

Risø National Laboratory for Sustainable Energy, Technical University of Denmark1

Zonal flows are recognized to play a crucial role for magnetized plasma confinement. The genesis of these flows out of turbulent fluctuations is therefore of significant interest. Here the relative importance of zonal flow generation mechanisms via the Reynolds stress, Maxwell stress, and geodesic acoustic mode (GAM) transfer in drift-Alfvén turbulence is investigated.

By means of numerical computations the energy transfer into zonal flows owing to each of these effects is quantified. The importance of the three driving ingredients in electrostatic and electromagnetic turbulence for conditions relevant to the edge of fusion devices is revealed for a broad range of parameters.

The Reynolds stress is found to provide a flow drive, while the electromagnetic Maxwell stress is in the cases considered a sink for the flow energy. In the limit of high plasma β, where electromagnetic effects and Alfvén dynamics are important, the Maxwell stress is found to cancel the Reynolds stress to a high degree.

The geodesic oscillations, related to equilibrium pressure profile modifications due to poloidally asymmetric transport, can act as both sinks as drive terms, depending on the parameter regime. For high-β cases the GAMs are the main drive of the flow. This is also reflected in the frequency dependence of the zonal flows, showing a distinct peak at the GAM frequency in that regime. © 2005 American Institute of Physics

Language: English
Publisher: American Institute of Physics
Year: 2005
Pages: 16
ISSN: 10897674 and 1070664x
Types: Journal article and Preprint article
DOI: 10.1063/1.1905603
ORCIDs: Naulin, V. , Nielsen, A.H. and Juul Rasmussen, J.
Keywords

2-E tekno

DTU users get better search results including licensed content and discounts on order fees.

Log in as DTU user

Access

Analysis