About

Log in?

DTU users get better search results including licensed content and discounts on order fees.

Anyone can log in and get personalized features such as favorites, tags and feeds.

Log in as DTU user Log in as non-DTU user No thanks

DTU Findit

Journal article

Design and operation of a filter reactor for continuous production of a selected pharmaceutical intermediate

From

Technical University of Denmark1

CHEC Research Centre, Department of Chemical and Biochemical Engineering, Technical University of Denmark2

Department of Chemical and Biochemical Engineering, Technical University of Denmark3

H. Lundbeck A/S4

A novel filter reactor system for continuous production of selected pharmaceutical intermediates is presented and experimentally verified. The filter reactor system consists of a mixed flow reactor equipped with a bottom filter, to retain solid reactant particles, followed by a conventional plug flow reactor, where residual reactant is converted by titration.

A chemical case study, production of the pharmaceutical intermediate allylcarbinol by a reaction between allylmagnesium chloride and 2-chloro-thioxanthone, in the presence of a side reaction is considered. The synthesis is conducted in tetrahydrofuran solvent. The use of the filter reactor design was explored by examining the transferability of a synthesis step in a present full-scale semi-batch pharmaceutical production into continuous processing.

The main advantages of the new continuous minireactor system, compared to the conventional semi-batch operation, are reduced impurity formation and the use of much lower reactor volumes (factor of 1000 based on the laboratory reactor) and less solvent consumption (from 5.8 to 2.3L/kg reactant). Added challenges include handling of continuous solid powder feeding, stable pumping of reactive slurries, and a possibility of continuous control.

Language: English
Year: 2012
Pages: 111-117
ISSN: 18734405 and 00092509
Types: Journal article
DOI: 10.1016/j.ces.2011.12.002
ORCIDs: Dam-Johansen, Kim and Kiil, Søren

DTU users get better search results including licensed content and discounts on order fees.

Log in as DTU user

Access

Analysis