About

Log in?

DTU users get better search results including licensed content and discounts on order fees.

Anyone can log in and get personalized features such as favorites, tags and feeds.

Log in as DTU user Log in as non-DTU user No thanks

DTU Findit

Journal article

Comparing ignitability for in situ burning of oil spills for an asphaltenic, a waxy and a light crude oil as a function of weathering conditions under arctic conditions

From

Section for Arctic Technology, Department of Civil Engineering, Technical University of Denmark1

Department of Civil Engineering, Technical University of Denmark2

SINTEF3

Center for Energy Resources Engineering, Centers, Technical University of Denmark4

Department of Chemistry, Technical University of Denmark5

In situ burning of oil spills in the Arctic is a promising countermeasure. In spite of the research already conducted more knowledge is needed especially regarding burning of weathered oils. This paper uses a new laboratory burning cell (100 mL sample) to test three Norwegian crude oils, Grane (asphalthenic), Kobbe (light oil) and Norne (waxy), for ignitability as a function of ice conditions and weathering degree.

The crude oils (9 L) were weathered in a laboratory basin (4.8 m3) under simulated arctic conditions (0, 50 and 90% ice cover). The laboratory burning tests show that the ignitability is dependent on oil composition, ice conditions and weathering degree. In open water, oil spills rapidly become “not ignitable” due to the weathering e.g. high water content and low content of residual volatile components.

The slower weathering of oil spills in ice (50 and 90% ice cover) results in longer time-windows for the oil to be ignitable. The composition of the oils is important for the window of opportunity. The asphalthenic Grane crude oil had a limited timewindow for in situ burning (9 h or less), while the light Kobbe crude oil and the waxy Norne crude oil had the longest time-windows for in situ burning (from 18 h to more than 72 h).

Such information regarding time windows for using in situ burning is very important for both contingency planning and operational use of in situ burning.

Language: English
Year: 2012
Pages: 1-6
ISSN: 18727441 and 0165232x
Types: Journal article
DOI: 10.1016/j.coldregions.2011.12.001
ORCIDs: Stenby, Erling Halfdan and 0000-0002-6496-8032

DTU users get better search results including licensed content and discounts on order fees.

Log in as DTU user

Access

Analysis