About

Log in?

DTU users get better search results including licensed content and discounts on order fees.

Anyone can log in and get personalized features such as favorites, tags and feeds.

Log in as DTU user Log in as non-DTU user No thanks

DTU Findit

Journal article

Release and Transformation of Inorganic Elements in Combustion of a High-Phosphorus Fuel

From

Department of Chemical and Biochemical Engineering1

Odinsvej 19, DK-2600 Glostrup, Denmark2

The release and transformation of inorganic elements during grate-firing of bran was studied via experiments in a laboratory-scale reactor, analysis of fly ash from a grate-fired plant, and equilibrium modeling. It was found that K, P, S, and to a lesser extent Cl and Na were released to the gas phase during bran combustion.

Laboratory-scale experiments showed that S was almost fully vaporized during pyrolysis below 700 °C. Sixty to seventy percent of the K and P in bran was released during combustion, in the temperature range 900–1100 °C. The release of K and P was presumably attributed to the vaporization of KPO3 generated from thermal decomposition of inositol phosphates, which were considered to be a major source of P and K in bran.

The influence of additives such as CaCO3, Ca(OH)2, and kaolinite on the release was also investigated. Ca-based additives generally increased the molar ratio of the released K/P, whereas kaolinite showed an opposite effect. Thermodynamic modeling indicated that the fly ash chemistry was sensitive to the molar ratio of the released K/P.

When the molar ratio of the released K/P was below 1, KPO3 and P4O10(g) were the main stable K and P species at temperatures higher than 500 °C. Below 500 °C, the KPO3 and P4O10 (g) may be converted to H3PO4(l), which may cause severe deposit build-up in the economizers of a grate-fired boiler. By increasing the molar ratio of the released K/P to above 2, the equilibrium distribution of the K and P species was significantly changed and the formation of H3PO4(l) was not predicted by thermodynamic modeling.

Language: English
Publisher: American Chemical Society
Year: 2011
Pages: 2874-2886
ISSN: 15205029 and 08870624
Types: Journal article
DOI: 10.1021/ef200454y

DTU users get better search results including licensed content and discounts on order fees.

Log in as DTU user

Access

Analysis