About

Log in?

DTU users get better search results including licensed content and discounts on order fees.

Anyone can log in and get personalized features such as favorites, tags and feeds.

Log in as DTU user Log in as non-DTU user No thanks

DTU Findit

Journal article

Numerical study of Bragg CDI on thick polycrystalline specimens

From

Department of Physics, Technical University of Denmark1

Neutrons and X-rays for Materials Physics, Department of Physics, Technical University of Denmark2

Aix-Marseille Université3

Bragg coherent diffraction imaging (BCDI) is a powerful X-ray imaging technique for crystalline materials, providing high resolution maps of structure and strain. The technique is typically used to study a small isolated object, and is in general not compatible with a bulk polycrystalline sample, due to overlap of diffraction signals from various crystalline elements.

In this paper, we present an imaging method for bulk samples, based on the use of a coherent source. The diffracted X-ray beam from a grain or domain of choice is magnified by an objective before being monitored by a 2D detector in the far field. The reconstruction principle is similar to the case of BCDI, while taking the magnification and pupil function into account.

The concept is demonstrated using numerical simulations and reconstructions. We find that by using an object-lens distance shorter than the focal length, the numerical aperture is larger than in a traditional imaging geometry. and at the same time the setup is insensitive to small phase errors by lens imperfections.

According to our simulations, we expect to be able to achieve a spatial resolution smaller than 20 nm when using the objective lens in this configuration. (C) 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Language: English
Year: 2018
Pages: 23411-23425
ISSN: 10944087
Types: Journal article
DOI: 10.1364/OE.26.023411
ORCIDs: Pedersen, Anders Filsøe , Poulsen, Henning Friis and 0000-0002-6894-4169

DTU users get better search results including licensed content and discounts on order fees.

Log in as DTU user

Access

Analysis