About

Log in?

DTU users get better search results including licensed content and discounts on order fees.

Anyone can log in and get personalized features such as favorites, tags and feeds.

Log in as DTU user Log in as non-DTU user No thanks

DTU Findit

Journal article

Micro-four-point Probe Hall effect Measurement method

From

Nanointegration Group, NanoSystemsEngineering Section, Department of Micro- and Nanotechnology, Technical University of Denmark1

NanoSystemsEngineering Section, Department of Micro- and Nanotechnology, Technical University of Denmark2

Department of Micro- and Nanotechnology, Technical University of Denmark3

Silicon Microtechnology Group, MicroElectroMechanical Systems Section, Department of Micro- and Nanotechnology, Technical University of Denmark4

MicroElectroMechanical Systems Section, Department of Micro- and Nanotechnology, Technical University of Denmark5

Center for Nanoteknologi, Centers, Technical University of Denmark6

Center for Individual Nanoparticle Functionality, Centers, Technical University of Denmark7

We report a new microscale Hall effect measurement method for characterization of semiconductor thin films without need for conventional Hall effect geometries and metal contact pads. We derive the electrostatic potential resulting from current flow in a conductive filamentary sheet with insulating barriers and with a magnetic field applied normal to the plane of the sheet.

Based on this potential, analytical expressions for the measured four-point resistance in presence of a magnetic field are derived for several simple sample geometries. We show how the sheet resistance and Hall effect contributions may be separated using dual configuration measurements. The method differs from conventional van der Pauw measurements since the probe pins are placed in the interior of the sample region, not just on the perimeter.

We experimentally verify the method by micro-four-point probe measurements on ultrashallow junctions in silicon and germanium. On a cleaved silicon ultrashallow junction sample we determine carrier mobility, sheet carrier density, and sheet resistance from micro-four-point probe measurements under various experimental conditions, and show with these conditions reproducibility within less than 1.5%. ©2008 American Institute of Physics

Language: English
Publisher: American Institute of Physics
Year: 2008
ISSN: 10897550 and 00218979
Types: Journal article
DOI: 10.1063/1.2949401
ORCIDs: Petersen, Dirch Hjorth and Hansen, Ole

DTU users get better search results including licensed content and discounts on order fees.

Log in as DTU user

Access

Analysis