About

Log in?

DTU users get better search results including licensed content and discounts on order fees.

Anyone can log in and get personalized features such as favorites, tags and feeds.

Log in as DTU user Log in as non-DTU user No thanks

DTU Findit

Journal article

Human cochlear tuning estimates from stimulus-frequency otoacoustic emissions

From

Department of Electrical Engineering, Technical University of Denmark1

Hearing Systems, Department of Electrical Engineering, Technical University of Denmark2

Two objective measures of human cochlear tuning, using stimulus-frequency otoacoustic emissions (SFOAE), have been proposed. One measure used SFOAE phase-gradient delay and the other twotone suppression (2TS) tuning curves. Here, it is hypothesized that the two measures lead to different frequency functions in the same listener.

Two experiments were conducted in ten young adult normal-hearing listeners in three frequency bands (1-2 kHz, 3-4 kHz and 5-6 kHz). Experiment 1 recorded SFOAE latency as a function of stimulus frequency, and experiment 2 recorded 2TS isoinput tuning curves. In both cases, the output was converted into a sharpness-of-tuning factor based on the equivalent rectangular bandwidth.

In both experiments, sharpness-of-tuning curves were shown to be frequency dependent, yielding sharper relative tuning with increasing frequency. Only a weak frequency dependence of the sharpness-of-tuning curves was observed for experiment 2, consistent with objective and behavioural estimates from the literature.

Most importantly, the absolute difference between the two tuning estimates was very large and statistically significant. It is argued that the 2TS estimates of cochlear tuning likely represents the underlying properties of the suppression mechanism, and not necessarily cochlear tuning. Thus the phase-gradient delay estimate is the most likely one to reflect cochlear tuning.

Language: English
Publisher: Acoustical Society of America
Year: 2011
Pages: 3797-3807
ISSN: 15208524 , 00014966 and 01630962
Types: Journal article
DOI: 10.1121/1.3575596
ORCIDs: Dau, Torsten

DTU users get better search results including licensed content and discounts on order fees.

Log in as DTU user

Access

Analysis