About

Log in?

DTU users get better search results including licensed content and discounts on order fees.

Anyone can log in and get personalized features such as favorites, tags and feeds.

Log in as DTU user Log in as non-DTU user No thanks

DTU Findit

Journal article

Photovoltage versus microprobe sheet resistance measurements on ultrashallow structures

From

Department of Micro- and Nanotechnology, Technical University of Denmark1

Nanointegration Group, NanoSystemsEngineering Section, Department of Micro- and Nanotechnology, Technical University of Denmark2

NanoSystemsEngineering Section, Department of Micro- and Nanotechnology, Technical University of Denmark3

Earlier work [T. Clarysse , Mater. Sci. Eng., B 114-115, 166 (2004); T. Clarysse , Mater. Res. Soc. Symp. Proc. 912, 197 (2006)] has shown that only few contemporary tools are able to measure reliably (within the international technology roadmap for semiconductors specifications) sheet resistances on ultrashallow (sub-50-nm) chemical-vapor-deposited layers [T.

Clarysse , Mater. Res. Soc. Symp. Proc. 912, 197 (2006)], especially in the presence of medium/highly doped underlying layers (representative for well/halo implants). Here the authors examine more closely the sheet resistance anomalies which have recently been observed between junction photovoltage (JPV) based tools and a micrometer-resolution four-point probe (M4PP) tool on a variety of difficult, state-of-the-art sub-32-nm complementary metal-oxide semiconductor structures (low energy and cluster implants, with/without halo, flash- and laser-based millisecond anneal).

Conventional four-point probe tools fail on almost all of these samples due to excessive probe penetration, whereas in several cases variable probe spacing (using a conventional spreading resistance probe tool) [T. Clarysse , Mater. Sci. Eng. R. 47, 123 (2004)] still gives useful values to within about 20%-35% due to its limited probe penetration (5-10 nm at 5 g load).

M4PP measurements give systematically a sensible and reproducible result. This is also the case for JPV-based sheet resistance measurements, although these appear to be prone to correct calibration procedures and are not designed for the characterization of multijunctions. Moreover, in a significant number of cases, residual damage and/or unexpected junction-leakage currents appear to induce a strong signal reduction, limiting the applicability of the JPV technique.

This has been further investigated by transmission-electron microscopy, high carrier-injection photomodulated optical-reflectance, and Synopsis-Sentaurus device simulations.

Language: English
Publisher: American Vacuum Society
Year: 2010
Pages: 8-14
ISSN: 15208567 , 21662754 , 10711023 and 21662746
Types: Journal article
DOI: 10.1116/1.3292637
ORCIDs: Thorsteinsson, Sune and Petersen, Dirch Hjorth

DTU users get better search results including licensed content and discounts on order fees.

Log in as DTU user

Access

Analysis