About

Log in?

DTU users get better search results including licensed content and discounts on order fees.

Anyone can log in and get personalized features such as favorites, tags and feeds.

Log in as DTU user Log in as non-DTU user No thanks

DTU Findit

Journal article · Conference paper

Comparison of 3D transitional CFD simulations for rotating wind turbine wings with measurements: Paper

From

Kiel University of Applied Sciences1

Office national d'études et de recherches aérospatiales2

Energy Research Centre of the Netherlands3

University of Oldenburg4

University of Stuttgart5

Department of Wind Energy, Technical University of Denmark6

Aerodynamic design, Department of Wind Energy, Technical University of Denmark7

Fraunhofer Institute for Wind Energy Systems8

Since the investigation of van Ingen et al., attempts were undertaken to search for laminar parts within the boundary layer of wind turbines operating in the lower atmosphere with much higher turbulence levels than seen in wind tunnels or at higher altitudes where airplanes usually fly. Based on the results of the DAN-Aero experiment and the Aerodynamic Glove project, a special work package Boundary Layer Transition was embedded in IAEwind Task 29 MexNext 3rd phase (MN3).

Here, we report on the results of the application of various CFD tools to predict transition on the MEXICO blade. In addition, recent results from a comparison of thermographic pictures (aimed at detecting transition) with 3D transitional CFD are included as well. The MEXICO (2006) and NEW MEXICO (2014) wind tunnel experiments on a turbine equipped with three 2.5 m blades have been described extensively in the literature.

In addition, during MN3, high-frequency Kulite data from experiments were used to detect traces of transitional effects. Complementary, the following set of codes were applied to cases 1.1 and 1.2 (axial inflow with 10 m/s and 15 m/s respectively) – elsA, CFX, OpenFOAM (with 2 different turbulence/transitional models), Ellipsys, (with 2 different turbulence models and eN transition prediction tool), FLOWer and TAU – to search for detection of laminar parts by means of simulation.

Obviously, the flow around a rotating blade is much more complicated than around a simple 2D section. Therefore, results for even integrated quantities like thrust and torque are varying strongly. Nevertheless, visible differences between fully turbulent and transitional set-ups are present. We discuss our findings, especially with respect to turbulence and transition models used.

Language: English
Publisher: IOP Publishing
Year: 2018
Pages: 022012
Proceedings: The Science of Making Torque from Wind 2018
ISSN: 17426596 and 17426588
Types: Journal article and Conference paper
DOI: 10.1088/1742-6596/1037/2/022012
ORCIDs: Madsen, H Å and Sørensen, N

DTU users get better search results including licensed content and discounts on order fees.

Log in as DTU user

Access

Analysis