About

Log in?

DTU users get better search results including licensed content and discounts on order fees.

Anyone can log in and get personalized features such as favorites, tags and feeds.

Log in as DTU user Log in as non-DTU user No thanks

DTU Findit

Journal article

Optimization of a biomass-integrated renewable energy microgrid with demand side management under uncertainty

In Applied Energy 2018, Volume 230, pp. 836-844
From

University of California at Davis1

Department of Electrical Engineering, Technical University of Denmark2

Center for Electric Power and Energy, Centers, Technical University of Denmark3

Distributed Energy Resources, Center for Electric Power and Energy, Centers, Technical University of Denmark4

A load shifting algorithm based on economic linear programming with model predictive control was developed to minimize the operating cost of a biomass combined heat and power based microgrid system. The model simultaneously manages supply and demand of both electrical and thermal energy as decision variables.

An algorithm was developed to optimize the shifting of loads based on the renewable energy generation and time-of-use tariff. As an illustrative example, a case study was examined for a conceptual utility grid-connected microgrid application in Davis, California. For the assumptions used, the proposed load shifting algorithm improved the performance of the microgrid by changing the load pattern and reduced the operating cost by 6.06% and increased the renewable energy fraction by 6.34% compared with the conventional no-load shift case.

Monte Carlo simulation was used to evaluate uncertainties among the renewable energy, demand side, and economic assumptions, generating a probability density function for the cost of energy.

Language: English
Year: 2018
Pages: 836-844
ISSN: 18729118 and 03062619
Types: Journal article
DOI: 10.1016/j.apenergy.2018.09.015
ORCIDs: 0000-0003-1964-9080 and Træholt, Chresten

DTU users get better search results including licensed content and discounts on order fees.

Log in as DTU user

Access

Analysis