About

Log in?

DTU users get better search results including licensed content and discounts on order fees.

Anyone can log in and get personalized features such as favorites, tags and feeds.

Log in as DTU user Log in as non-DTU user No thanks

DTU Findit

Journal article

Bacterial single-stranded DNA-binding proteins are phosphorylated on tyrosine

From

Department of Systems Biology, Technical University of Denmark1

Center for Microbial Biotechnology, Department of Systems Biology, Technical University of Denmark2

Department of Physics, Technical University of Denmark3

Single-stranded DNA-binding proteins (SSBs) are required for repair, recombination and replication in all organisms. Eukaryotic SSBs are regulated by phosphorylation on serine and threonine residues. To our knowledge, phosphorylation of SSBs in bacteria has not been reported. A systematic search for phosphotyrosine-containing proteins in Streptomyces griseus by immunoaffinity chromatography identified bacterial SSBs as a novel target of bacterial tyrosine kinases.

Since genes encoding protein-tyrosine kinases (PTKs) have not been recognized in streptomycetes, and SSBs from Streptomyces coelicolor (ScSSB) and Bacillus subtilis (BsSSB) share 38.7% identity, we used a B.subtilis protein-tyrosine kinase YwqD to phosphorylate two cognate SSBs (BsSSB and YwpH) in vitro.

We demonstrate that in vivo phosphorylation of B.subtilis SSB occurs on tyrosine residue 82, and this reaction is affected antagonistically by kinase YwqD and phosphatase YwqE. Phosphorylation of B.subtilis SSB increased binding almost 200-fold to single-stranded DNA in vitro. Tyrosine phosphorylation of B.subtilis, S.coelicolor and Escherichia coli SSBs occured while they were expressed in E.coli, indicating that tyrosine phosphorylation of SSBs is a conserved process of post-translational modification in taxonomically distant bacteria.

Language: English
Publisher: Oxford University Press
Year: 2006
Pages: 1588-1596
ISSN: 13624962 and 03051048
Types: Journal article
DOI: 10.1093/nar/gkj514
ORCIDs: Mijakovic, Ivan and Jensen, Peter Ruhdal

DTU users get better search results including licensed content and discounts on order fees.

Log in as DTU user

Access

Analysis