About

Log in?

DTU users get better search results including licensed content and discounts on order fees.

Anyone can log in and get personalized features such as favorites, tags and feeds.

Log in as DTU user Log in as non-DTU user No thanks

DTU Findit

Journal article

Rapid flame doping of Co to WS2 for efficient hydrogen evolutionElectronic supplementary information (ESI) available. See DOI: 10.1039/c8ee01111g

From

Department of Mechanical Engineering, Stanford University, Stanford, California 94305, USA1

Department of Chemical Engineering, Stanford University, Stanford, California 94305, USA2

Department of Material Science and Engineering, Stanford University, Stanford, California 94305, USA3

SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA4

Transition metal sulfides have been widely studied as electrocatalysts for the hydrogen evolution reaction (HER). Though elemental doping is an effective way to enhance sulfide activity for the HER, most studies have only focused on the effect of doping sulfide edge sites. Few studies have investigated the effect of doping the basal plane or the effect of doping concentration on basal plane activity.

Probing the dopant concentration dependence of HER activity is challenging due to experimental difficulties in controlling dopant incorporation. Here, we overcome this challenge by first synthesizing doped transition metal oxides and then sulfurizing the oxides to sulfides, yielding core/shell Co-doped WS2/W18O49 nanotubes with a tunable amount of Co.

Our combined density functional theory (DFT) calculations and experiments demonstrate that the HER activity of basal plane WS2 changes non-monotonically with the concentration of Co due to local changes in the binding energy of H and the formation energy of S-vacancies. At an optimal Co doping concentration, the overpotential to reach −10 mA cm−2 is reduced by 210 mV, and the Tafel slope is reduced from 122 to 49 mV per decade (mV dec−1) compared to undoped WS2 nanotubes.

Language: Undetermined
Publisher: The Royal Society of Chemistry
Year: 2018
Pages: 2270-2277
ISSN: 17545706 and 17545692
Types: Journal article
DOI: 10.1039/c8ee01111g
ORCIDs: Shi, Xinjian , McEnaney, Joshua M. , Zhang, Yirui , Jaramillo, Thomas F. and Zheng, Xiaolin

DTU users get better search results including licensed content and discounts on order fees.

Log in as DTU user

Access

Analysis