About

Log in?

DTU users get better search results including licensed content and discounts on order fees.

Anyone can log in and get personalized features such as favorites, tags and feeds.

Log in as DTU user Log in as non-DTU user No thanks

DTU Findit

Journal article

Variation in diatom biochemical composition during a simulated bloom and its effect on copepod production

The biochemical quality of phytoplankton depends in part upon nutrient availability, which has implications for the population dynamics of grazers. Here, we examined how nutrient availability influenced the growth dynamics and biochemical content of the marine diatom Thalassiosira weissflogii and how these biochemical changes impacted the vital rates of a calanoid copepod (Acartia tonsa).

Changes in biochemistry (protein, carbohydrate and fatty acids) were compared in diatom cultures that simulated bloom conditions (B-algae) and those maintained in near exponential growth (E-algae) over the course of a 16-day experiment. Egg production rates (EPRs, eggs female(-1) day(-1)) and the developmental success of copepodite stages of A. tonsa fed these different diets were quantified.

Copepod EPR was significantly lower (reduced by half) when B-algae entered the senescent phase due to silicate limitation. In a crossover (diet switch) experiment, EPR increased when copepods fed B-algae were switched to E-algae and vice versa. Copepodites of A. tonsa developed normally and reached the adult (C6) stage when fed E-algae, but ceased development (approximately at stage C2) when reared on senescent phase B-algae.

Given the importance of copepods as prey for higher trophic levels, our results highlight how nutritional changes that naturally occur during a phytoplankton bloom may influence the productivity of copepods and higher trophic levels.

Language: English
Year: 2009
Pages: 1391-1405
ISSN: 14643774 and 01427873
Types: Journal article
DOI: 10.1093/plankt/fbp073

DTU users get better search results including licensed content and discounts on order fees.

Log in as DTU user

Access

Analysis