About

Log in?

DTU users get better search results including licensed content and discounts on order fees.

Anyone can log in and get personalized features such as favorites, tags and feeds.

Log in as DTU user Log in as non-DTU user No thanks

DTU Findit

Journal article

Ultrasensitive Micro String Resonators for Solid State Thermomechanical Analysis of Small and Large Molecules

From

University of Copenhagen1

Nanoprobes, Department of Micro- and Nanotechnology, Technical University of Denmark2

Department of Micro- and Nanotechnology, Technical University of Denmark3

Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics, Department of Health Technology, Technical University of Denmark4

Thermal analysis plays an important role in both industrial and fundamental research and is widely used to study thermal characteristics of a variety of materials. However, despite considerable effort using different techniques, research struggles to resolve the physico-chemical nature of many thermal transitions such as amorphous relaxations or structural changes in proteins.

To overcome the limitations in sensitivity of conventional techniques and to gain new insight into the thermal and mechanical properties of small and large molecule samples, we have developed an instrumental analysis technique using resonating low stress silicon nitride microstrings. With a simple sample deposition method and post process data analysis, we are able to perform rapid thermal analysis of direct instrumental triplicate samples with only pico- to nanograms of material.

Utilizing this method, we present the first measurement of amorphous alpha and beta relaxation, as well as liquid crystalline transitions and decomposition of small molecule samples deposited onto a micro string resonator. Furthermore, sensitive measurements of the glass transition of polymers and yet unresolved thermal responses of proteins below their apparent denaturation temperature, which seem to include the true solid state glass transition of pure protein, are reported.

Where applicable, thermal events detected with the setup were in good agreement with conventional techniques such as differential scanning calorimetry and dynamic mechanical analysis. The sensitive detection of even subtle thermal transitions highlights further possibilities and applications of resonating microstrings in instrumental physico-chemical analysis.

Language: English
Publisher: American Chemical Society
Year: 2018
Pages: 17522-17531
ISSN: 15205126 and 00027863
Types: Journal article
DOI: 10.1021/jacs.8b09034
ORCIDs: 0000-0002-3946-0317 , 0000-0002-8211-5607 , 0000-0002-7521-6020 , Rangacharya, Varadarajan P. , Hwu, En Te and Boisen, Anja

DTU users get better search results including licensed content and discounts on order fees.

Log in as DTU user

Access

Analysis