About

Log in?

DTU users get better search results including licensed content and discounts on order fees.

Anyone can log in and get personalized features such as favorites, tags and feeds.

Log in as DTU user Log in as non-DTU user No thanks

DTU Findit

Journal article

A compact cyclic plasticity model with parameter evolution

From

Department of Mechanical Engineering, Technical University of Denmark1

Solid Mechanics, Department of Mechanical Engineering, Technical University of Denmark2

Technical University of Denmark3

The paper presents a compact model for cyclic plasticity based on energy in terms of external and internal variables, and plastic yielding described by kinematic hardening and a flow potential with an additive term controlling the nonlinear cyclic hardening. The model is basically described by five parameters: external and internal stiffness, a yield stress and a limiting ultimate stress, and finally a parameter controlling the gradual development of plastic deformation.

Calibration against numerous experimental results indicates that typically larger plastic strains develop than predicted by the Armstrong–Frederick model, contained as a special case of the present model for a particular choice of the shape parameter. In contrast to previous work, where shaping the stress-strain loops is derived from multiple internal stress states, this effect is here represented by a single parameter, and it is demonstrated that this simple formulation enables very accurate representation of experimental results.

An extension of the theory to account for model parameter evolution effects, e.g. in the form of changing yield level, is included in the form of extended evolution equations for the model parameters. Finally, it is demonstrated that the model in combination with a simple parameter interpolation scheme enables representation of ratcheting effects.

Language: English
Year: 2017
Pages: 57-68
ISSN: 18727743 and 01676636
Types: Journal article
DOI: 10.1016/j.mechmat.2017.07.012
ORCIDs: Krenk, Steen

DTU users get better search results including licensed content and discounts on order fees.

Log in as DTU user

Access

Analysis