About

Log in?

DTU users get better search results including licensed content and discounts on order fees.

Anyone can log in and get personalized features such as favorites, tags and feeds.

Log in as DTU user Log in as non-DTU user No thanks

DTU Findit

Journal article

Microstructure and performance of La0.58Sr0.4Co0.2Fe0.8O3−δ cathodes deposited on BaCe0.2Zr0.7Y0.1O3−δ by infiltration and spray pyrolysis

From

Department of Energy Conversion and Storage, Technical University of Denmark1

Mixed Conductors, Department of Energy Conversion and Storage, Technical University of Denmark2

SINTEF3

La0.58Sr0.4Co0.2Fe0.8O3−δ (LSCF) cathodes have been deposited on proton-conducting BaCe0.2Zr0.7Y0.1O3−δ (BCZY27) electrolyte and studied in symmetric cells to investigate the cathode microstructure and electrochemical performance. Three different types of cathodes have been prepared: two prepared from a solution, infiltrated into a screen-printed BZCY27 porous backbone (4 and 12 infiltrations), and one prepared by spray pyrolysis onto a polished electrolyte.

In all three cases, LSCF is obtained after annealing at 700°C for 2h. Analysis of the electrochemical impedance spectra between 450°C and 600°C in air, with varying p(H2O), reveals that the charge transfer contribution is the lowest for the backbone-infiltrated cathode while the oxygen dissociation/adsorption contribution is the lowest for the spray-pyrolyzed cathode.

The area specific resistances increase with the water vapor pressure. The area specific resistances obtained are 0.61Ωcm2 and 0.89Ωcm2 at 600°C for the spray-pyrolyzed LSCF cell in dry and humidified air, respectively; the corresponding resistances are 0.63Ωcm2 and 0.98Ωcm2 for the 12 times infiltrated LSCF cell.

These resistances are the lowest reported for LSCF cathodes on Ba(Ce,Zr)O3-based electrolytes and show the promise of low-temperature fabrication methods for these systems.

Language: English
Year: 2012
Pages: 172-179
ISSN: 18732755 and 03787753
Types: Journal article
DOI: 10.1016/j.jpowsour.2012.02.090
ORCIDs: Bonanos, Nikolaos

DTU users get better search results including licensed content and discounts on order fees.

Log in as DTU user

Access

Analysis