About

Log in?

DTU users get better search results including licensed content and discounts on order fees.

Anyone can log in and get personalized features such as favorites, tags and feeds.

Log in as DTU user Log in as non-DTU user No thanks

DTU Findit

Journal article

Long-term affected energy production of waste to energy technologies identified by use of energy system analysis

From

Energy Systems Analysis, Systems Analysis Division, Risø National Laboratory for Sustainable Energy, Technical University of Denmark1

Systems Analysis Division, Risø National Laboratory for Sustainable Energy, Technical University of Denmark2

Risø National Laboratory for Sustainable Energy, Technical University of Denmark3

Intelligent Energy Systems Programme, Risø National Laboratory for Sustainable Energy, Technical University of Denmark4

Affected energy production is often decisive for the outcome of consequential life-cycle assessments when comparing the potential environmental impact of products or services. Affected energy production is however difficult to determine. In this article the future long-term affected energy production is identified by use of energy system analysis.

The focus is on different uses of waste for energy production. The Waste-to-Energy technologies analysed include co-combustion of coal and waste, anaerobic digestion and thermal gasification. The analysis is based on optimization of both investments and production of electricity, district heating and bio-fuel in a future possible energy system in 2025 in the countries of the Northern European electricity market (Denmark, Norway, Sweden, Finland and Germany).

Scenarios with different CO2 quota costs are analysed. It is demonstrated that the waste incineration continues to treat the largest amount of waste. Investments in new waste incineration capacity may, however, be superseded by investments in new Waste-to-Energy technologies, particularly those utilising sorted fractions such as organic waste and refuse derived fuel.

The changed use of waste proves to always affect a combination of technologies. What is affected varies among the different Waste-to-Energy technologies and is furthermore dependent on the CO2 quota costs and on the geographical scope. The necessity for investments in flexibility measures varies with the different technologies such as storage of heat and waste as well as expansion of district heating networks.

Finally, inflexible technologies such as nuclear power plants are shown to be affected.

Language: English
Year: 2010
Pages: 2510-2519
ISSN: 18792456 and 0956053x
Types: Journal article
DOI: 10.1016/j.wasman.2010.04.015
ORCIDs: Münster, Marie

DTU users get better search results including licensed content and discounts on order fees.

Log in as DTU user

Access

Analysis