About

Log in?

DTU users get better search results including licensed content and discounts on order fees.

Anyone can log in and get personalized features such as favorites, tags and feeds.

Log in as DTU user Log in as non-DTU user No thanks

DTU Findit

Journal article

X-ray diffraction microscopy based on refractive optics

From

Department of Physics, Technical University of Denmark1

Neutrons and X-rays for Materials Physics, Department of Physics, Technical University of Denmark2

European Synchrotron Radiation Facility3

A formalism is presented for dark‐field X‐ray microscopy using refractive optics. The new technique can produce three‐dimensional maps of lattice orientation and axial strain within millimetre‐sized sampling volumes and is particularly suited to in situ studies of materials at hard X‐ray energies. An objective lens in the diffracted beam magnifies the image and acts as a very efficient filter in reciprocal space, enabling the imaging of individual domains of interest with a resolution of 100 nm.

Analytical expressions for optical parameters such as numerical aperture, vignetting, and the resolution in both direct and reciprocal spaces are provided. It is shown that the resolution function in reciprocal space can be highly anisotropic and varies as a function of position in the field of view.

Inserting a square aperture in front of the objective lens facilitates disjunct and space‐filling sampling, which is key for three‐dimensional reconstruction and analysis procedures based on the conservation of integrated intensity. A procedure for strain scanning is presented. Finally the formalism is validated experimentally at an X‐ray energy of 17 keV.

Language: English
Publisher: International Union of Crystallography
Year: 2017
Pages: 1441-1456
ISSN: 16005767 and 00218898
Types: Journal article
DOI: 10.1107/S1600576717011037
ORCIDs: Poulsen, Henning Friis and Ahl, Sonja Rosenlund

DTU users get better search results including licensed content and discounts on order fees.

Log in as DTU user

Access

Analysis