About

Log in?

DTU users get better search results including licensed content and discounts on order fees.

Anyone can log in and get personalized features such as favorites, tags and feeds.

Log in as DTU user Log in as non-DTU user No thanks

DTU Findit

Ahead of Print article · Journal article

Ear-to-Ear Propagation Model based on Geometrical Theory of Diffraction

From

Department of Electrical Engineering, Technical University of Denmark1

Electromagnetic Systems, Department of Electrical Engineering, Technical University of Denmark2

GN Hearing Danmark A/S3

An ear-to-ear propagation model based on geometrical theory of diffraction is presented. The model uses the creeping wave loss along the geodesic paths that connect the ears. It is the first model to investigate which geodesic paths that link the ears. The model uses geometrical theory of diffraction expressions for a lossy dielectric material, which is a much better approximation of the human body than the perfect electric conductor approximation often used.

The model is validated for the industrial, scientific and medical band at 2.45 GHz. The model is valid at any frequency range as long as the propagation loss through the head is significantly higher than the propagation loss around the head. Likewise, the model could be used for other areas of the body.

The comparison with simulations show strong correlation. The antenna orientation and frequency sweeps were preformed to further investigate the model. The sweeps change the radiation pattern of the antenna to utilize different paths around the head, but the model still correlates with the simulation.

This validates the models division of the ear-to-ear propagation into different geodesic paths around the head.

Language: English
Publisher: IEEE
Year: 2019
Pages: 1153-1160
ISSN: 15582221 and 0018926x
Types: Ahead of Print article and Journal article
DOI: 10.1109/TAP.2018.2882587
ORCIDs: Kammersgaard, Nikolaj Peter Brunvoll and Jakobsen, Kaj Bjarne

DTU users get better search results including licensed content and discounts on order fees.

Log in as DTU user

Access

Analysis