About

Log in?

DTU users get better search results including licensed content and discounts on order fees.

Anyone can log in and get personalized features such as favorites, tags and feeds.

Log in as DTU user Log in as non-DTU user No thanks

DTU Findit

Journal article

PET imaging with copper-64 as a tool for real-time in vivo investigations of the necessity for crosslinking of polymeric micelles in nanomedicine: Imaging the influence of polymeric micelle crosslinking

From

Center for Nuclear Technologies, Technical University of Denmark1

The Hevesy Laboratory, Center for Nuclear Technologies, Technical University of Denmark2

University of Copenhagen3

Department of Micro- and Nanotechnology, Technical University of Denmark4

Colloids and Biological Interfaces, Department of Micro- and Nanotechnology, Technical University of Denmark5

Polymeric micelles in nanomedicine are often crosslinked to prevent disintegration in vivo. This typically requires clinically problematic chemicals or laborious procedures. In addition, crosslinking may interfere with advanced release strategies. Despite this, it is often not investigated whether crosslinking is necessary for efficient drug delivery.

We used PET imaging with 64Cu to demonstrate general methodology for real-time in vivo investigations of micelle stability. Triblock copolymers with 4-methylcoumarin cores of ABC-type (PEG-PHEMA-PCMA) were functionalized in the handle region (PHEMA) with CB-TE2A chelators. Polymeric micelles were formed by dialysis and one half was core-crosslinked by UV light (CL) and the other half was not (nonCL).

Both CL and nonCL were radiolabeled with 64 Cu and compared in vivo in tumor-bearing mice, with free 64Cu as control. Accumulation in relevant organs was quantified by ROI analysis on PET images and ex vivo counting. It was observed that CL and nonCL showed limited differences in biodistribution from each other, whereas both differed markedly from control (free 64Cu).

This demonstrated that 4-methylcoumarin core micelles may form micelles that are stable in circulation even without crosslinking. The methodology presented here where individual unimers are radiolabeled is applicable to a wide range of polymeric micelle types.

Language: English
Year: 2017
Pages: 366-374
ISSN: 10991344 and 03624803
Types: Journal article
DOI: 10.1002/jlcr.3510
ORCIDs: Jensen, Andreas Tue Ingemann , 0000-0002-2706-5547 and Andresen, Thomas Lars

DTU users get better search results including licensed content and discounts on order fees.

Log in as DTU user

Access

Analysis