About

Log in?

DTU users get better search results including licensed content and discounts on order fees.

Anyone can log in and get personalized features such as favorites, tags and feeds.

Log in as DTU user Log in as non-DTU user No thanks

DTU Findit

Journal article

Renewable hydrogen: carbon formation on Ni and Ru catalysts during ethanol steam-reforming

From

Sustainable and Green Chemistry, Department of Chemistry, Technical University of Denmark1

Department of Chemistry, Technical University of Denmark2

Department of Physics, Technical University of Denmark3

Biomass is probably the only realistic green and sustainable carbonaceous alternative to fossil fuels. By degradation and fermentation, it can be converted into bioethanol, which is a chemical with a range of possible applications. In this study, the catalytic steam-reforming of ethanol for the production of hydrogen is investigated, along with quantitative and qualitative determinations of carbon formation on the catalysts by TPO and TEM experiments.

A Ru/ MgAl2O4 catalyst, a Ni/MgAl2O4 catalyst as well as Ag-and K-promoted Ni/ MgAl2O4 catalysts were studied. The operating temperature was between 673 and 873 K, and a 25 vol% ethanol -water mixture was employed. Deactivation of the catalysts by carbon formation is the main obstacle for industrial use of this process.

Carbon formation was found to be highly affected by the operating temperature and the choice of catalyst. The effect of Ag addition was a rapid deactivation of the catalyst due to an enhanced gum carbon formation on the Ni crystals. Contrary to this, the effect of K addition was a prolonged resistance against carbon formation and therefore against deactivation.

The Ru catalyst operates better than all the Ni catalysts, especially at lower temperatures.

Language: English
Publisher: The Royal Society of Chemistry
Year: 2007
Pages: 1016-1021
ISSN: 14639270 and 14639262
Types: Journal article
DOI: 10.1039/b702890c

DTU users get better search results including licensed content and discounts on order fees.

Log in as DTU user

Access

Analysis