About

Log in?

DTU users get better search results including licensed content and discounts on order fees.

Anyone can log in and get personalized features such as favorites, tags and feeds.

Log in as DTU user Log in as non-DTU user No thanks

DTU Findit

Journal article · Preprint article

Assimilation of ground and satellite magnetic measurements: inference of core surface magnetic and velocity field changes

From

University of Grenoble1

National Space Institute, Technical University of Denmark2

Geomagnetism, National Space Institute, Technical University of Denmark3

We jointly invert for magnetic and velocity fields at the core surface over the period 1997–2017, directly using ground-based observatory time-series and measurements from the CHAMP and Swarm satellites. Satellite data are reduced to the form of virtual observatory time-series distributed on a regular grid in space.

Such a sequential storage helps incorporate voluminous modern magnetic data into a stochastic Kalman filter, whereby spatial constraints are incorporated based on a norm derived from statistics of a numerical geodynamo model. Our algorithm produces consistent solutions both in terms of the misfit to the data and the estimated posterior model uncertainties.

We retrieve core flow features previously documented from the analysis of spherical harmonic field models, such as the eccentric anticyclonic gyre. We find enhanced diffusion patterns under both Indonesia and Africa. In contrast to a steady flow that is strong under the Atlantic hemisphere but very weak below the Pacific, interannual motions appear evenly distributed over the two hemispheres.

Recovered interannual to decadal flow changes are predominantly symmetrical with respect to the equator outside the tangent cylinder. In contrast, under the Northern Pacific we find an intensification of a high latitude jet, but see no evidence for a corresponding feature in the Southern hemisphere.

The largest flow accelerations that we isolate over the studied era are associated with meanders, attached to the equatorward meridional branch of the planetary gyre in the Eastern hemisphere, that are linked to the appearance of an eastward equatorial jet below the Western Pacific.

Language: English
Year: 2018
Pages: 695-712
ISSN: 1365246x and 0956540x
Types: Journal article and Preprint article
DOI: 10.1093/gji/ggy297
ORCIDs: Hammer, M. D. and Finlay, C. C.
Other keywords

physics.geo-ph

DTU users get better search results including licensed content and discounts on order fees.

Log in as DTU user

Access

Analysis